Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Depolarization increases vasoactive intestinal peptide- and substance P- like immunoreactivities in cultured neonatal and adult sympathetic neurons

Y Sun, MS Rao, SC Landis and RE Zigmond
Journal of Neuroscience 1 October 1992, 12 (10) 3717-3728; DOI: https://doi.org/10.1523/JNEUROSCI.12-10-03717.1992
Y Sun
Department of Pharmacology, University of Colorado Health Sciences Center, Denver 80262.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MS Rao
Department of Pharmacology, University of Colorado Health Sciences Center, Denver 80262.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SC Landis
Department of Pharmacology, University of Colorado Health Sciences Center, Denver 80262.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RE Zigmond
Department of Pharmacology, University of Colorado Health Sciences Center, Denver 80262.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We have utilized the favorable signal-to-noise ratios provided by whole- cell recording, combined with variance analysis, to determine the pre- or postsynaptic actions of a variety of manipulations on unitary EPSPs evoked by low-intensity stimulation of afferents to CA1 pyramidal neurons in slices of hippocampus. Estimates of quantal content (mcv) were determined by calculating the ratio of the squared average unitary EPSP amplitude (determined from 150–275 responses) to the variance of these responses (M2/sigma 2), while quantal amplitudes (qcv) were estimated by calculating the ratio of the response variance to average EPSP size (sigma 2/M). Estimates of mcv were highly correlated with those determined using the method of failures (mf). With paired stimulation (50 msec interpulse interval) there was a significant facilitation of the second unitary EPSP, accompanied by an increase in mcv, but not qcv, suggesting that this facilitation was of presynaptic origin. Superfusion of hippocampal slices with various concentrations of adenosine, the A1-selective adenosine receptor agonist cyclohexyladenosine, or the Ca2+ channel blocker cadmium significantly reduced average unitary EPSP amplitudes and mcv, without significantly altering qcv, suggesting a presynaptic locus for this inhibition. The 50% effective concentration for the apparent presynaptic action of adenosine on mcv in the present study (5.7 microM; 95% confidence limits = 4.2–7.7 microM) was significantly lower than its EC50 for reducing conventional, large EPSPs (33 microM; recorded with high- resistance microelectrodes), or extracellular field EPSPs (29 microM), as previously reported by this laboratory. The glutamate receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) reduced average unitary EPSP amplitudes; in contrast to the above manipulations, it had no effect on mcv, but significantly altered qcv, which is consistent with its presumed postsynaptic mechanism of action. We conclude from these data that adenosine presynaptically reduces synaptic strength at Schaffer collateral-commissural synapses in the hippocampus by diminishing the number of quanta released, not by reducing the size of these individual quanta or postsynaptic sensitivity to excitatory neurotransmitter. These results suggest that the mechanism by which adenosine inhibits synaptic transmission in the hippocampus is similar, if not identical, to the mechanism by which it inhibits synaptic transmission at the neuromuscular junction.

Back to top

In this issue

The Journal of Neuroscience: 12 (10)
Journal of Neuroscience
Vol. 12, Issue 10
1 Oct 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Depolarization increases vasoactive intestinal peptide- and substance P- like immunoreactivities in cultured neonatal and adult sympathetic neurons
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Depolarization increases vasoactive intestinal peptide- and substance P- like immunoreactivities in cultured neonatal and adult sympathetic neurons
Y Sun, MS Rao, SC Landis, RE Zigmond
Journal of Neuroscience 1 October 1992, 12 (10) 3717-3728; DOI: 10.1523/JNEUROSCI.12-10-03717.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Depolarization increases vasoactive intestinal peptide- and substance P- like immunoreactivities in cultured neonatal and adult sympathetic neurons
Y Sun, MS Rao, SC Landis, RE Zigmond
Journal of Neuroscience 1 October 1992, 12 (10) 3717-3728; DOI: 10.1523/JNEUROSCI.12-10-03717.1992
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.