Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Distributed processing of sensory information in the leech. III. A dynamical neural network model of the local bending reflex

SR Lockery and TJ Sejnowski
Journal of Neuroscience 1 October 1992, 12 (10) 3877-3895; https://doi.org/10.1523/JNEUROSCI.12-10-03877.1992
SR Lockery
Computational Neurobiology Laboratory, Salk Institute for Biological Studies, San Diego, California 92186–5800.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
TJ Sejnowski
Computational Neurobiology Laboratory, Salk Institute for Biological Studies, San Diego, California 92186–5800.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The subpopulation of identified interneurons in the local bending reflex receive multiple inputs from dorsal and ventral mechanoreceptors and have outputs to dorsal and ventral motor neurons. Their connections suggest a distributed processing mechanism in which withdrawal from dorsal, ventral, or lateral stimuli is controlled by a single population of approximately 40 multifunctional interneurons, but it is unclear whether additional interneurons dedicated to particular inputs are needed to account for each kind of bend. We therefore asked whether a model could be constructed that reproduced all behaviors without dedicated interneurons. Interneurons in the model were constrained to receive both dorsal and ventral inputs. Connection strengths were adjusted by gradient descent optimization until the model reproduced the amplitude and time course of motor neuron synaptic potentials in intracellular recordings of the response to many different stimuli. After optimization, the similarity between model and identified interneurons showed that additional dedicated interneurons are not necessary to produce all forms of the behavior. Successful optimization of networks with many fewer interneurons showed that the 40-interneuron network is redundant, raising the possibility that the interneurons have additional functions. Finally, optimizing networks with additional constraints produced better matches to some of the identified interneurons and showed that local bending can be produced by two populations of interneurons: one with outputs consistent with dorsal bending, the other with ventral bending. This suggests a simple model in which two principal types of interneurons produce many different behaviors and predicts the type of interneuron that remains to be identified.

Back to top

In this issue

The Journal of Neuroscience: 12 (10)
Journal of Neuroscience
Vol. 12, Issue 10
1 Oct 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Distributed processing of sensory information in the leech. III. A dynamical neural network model of the local bending reflex
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Distributed processing of sensory information in the leech. III. A dynamical neural network model of the local bending reflex
SR Lockery, TJ Sejnowski
Journal of Neuroscience 1 October 1992, 12 (10) 3877-3895; DOI: 10.1523/JNEUROSCI.12-10-03877.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Distributed processing of sensory information in the leech. III. A dynamical neural network model of the local bending reflex
SR Lockery, TJ Sejnowski
Journal of Neuroscience 1 October 1992, 12 (10) 3877-3895; DOI: 10.1523/JNEUROSCI.12-10-03877.1992
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.