Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log out
  • Log in
  • Subscribe
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • Subscribe
  • My alerts
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

A confocal laser microscopic study of enkephalin-immunoreactive appositions onto physiologically identified neurons in the rostral ventromedial medulla

P Mason, SA Back and HL Fields
Journal of Neuroscience 1 October 1992, 12 (10) 4023-4036; DOI: https://doi.org/10.1523/JNEUROSCI.12-10-04023.1992
P Mason
Department of Neurology, University of California, San Francisco 94143.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SA Back
Department of Neurology, University of California, San Francisco 94143.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
HL Fields
Department of Neurology, University of California, San Francisco 94143.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Neurons in the rostral ventromedial medulla (RVM) are important in the opioid modulation of dorsal horn nociceptive transmission. Systemically administered morphine inhibits one class of RVM cells, the on-cells; excites a second class of RVM cells, the off-cells; and has no effect on a third class, neutral cells. In contrast, iontophoretic application of morphine inhibits on-cells but does not alter the activity of either off- or neutral cells. The present study addresses whether the differential sensitivity to exogenous opioids is correlated with a differential termination pattern onto the three classes of RVM neurons by afferents containing endogenous opioids. Intracellular recordings were made from RVM neurons in rats under light halothane anesthesia. Physiologically characterized neurons were injected with Neurobiotin and then subsequently visualized with a Texas red fluorophore. Thick (50 microns) sections containing labeled RVM cells were processed for enkephalin immunoreactivity (ENK-IR) using an FITC fluorophore and then optically sectioned at 1.5 micron intervals using a dual-channel confocal laser scanning microscope. ENK-IR appositions were found on the somata and dendrites of all on-cells. Although ENK-IR varicosities were also apparently apposed to off- and neutral cells, the density of such appositions was significantly less than the density of ENK-IR appositions onto on-cells. The greater overall density of ENK-IR appositions onto on-cells was apparently due to a concentration of appositions on the soma and proximal dendrites of these neurons. These results support a model of RVM function in which endogenous opioid peptides produce an antinociceptive action by a direct inhibitory action on on-cells that facilitate nociceptive transmission. This on- cell inhibition may produce an additional antinociceptive effect by removing a possible on-cell inhibition of off-cells, which are thought to inhibit nociceptive transmission.

Back to top

In this issue

The Journal of Neuroscience: 12 (10)
Journal of Neuroscience
Vol. 12, Issue 10
1 Oct 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A confocal laser microscopic study of enkephalin-immunoreactive appositions onto physiologically identified neurons in the rostral ventromedial medulla
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
A confocal laser microscopic study of enkephalin-immunoreactive appositions onto physiologically identified neurons in the rostral ventromedial medulla
P Mason, SA Back, HL Fields
Journal of Neuroscience 1 October 1992, 12 (10) 4023-4036; DOI: 10.1523/JNEUROSCI.12-10-04023.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
A confocal laser microscopic study of enkephalin-immunoreactive appositions onto physiologically identified neurons in the rostral ventromedial medulla
P Mason, SA Back, HL Fields
Journal of Neuroscience 1 October 1992, 12 (10) 4023-4036; DOI: 10.1523/JNEUROSCI.12-10-04023.1992
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.