Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Calcium concentration dynamics produced by synaptic activation of CA1 hippocampal pyramidal cells

WG Regehr and DW Tank
Journal of Neuroscience 1 November 1992, 12 (11) 4202-4223; DOI: https://doi.org/10.1523/JNEUROSCI.12-11-04202.1992
WG Regehr
Biological Computation Research Department, AT&T Bell Laboratories, Murray Hill, New Jersey 07974.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DW Tank
Biological Computation Research Department, AT&T Bell Laboratories, Murray Hill, New Jersey 07974.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The spatial and temporal dynamics of many electrophysiological and biochemical processes in nerve cells are in turn dependent on the concentration dynamics of the second messenger calcium. We have used microfluorimetry of the calcium indicator fura-2 (Grynkiewicz et al., 1985) to measure and characterize synaptically activated calcium changes in individual CA1 pyramidal cells contained within guinea pig hippocampal slices. One component of the calcium changes was largely produced by influx through voltage-dependent Ca2+ channels (VDCCs). It consisted of large transient accumulations in the proximal-apical and basal dendrites; the amplitude was smaller in the distal-apical dendrites and the soma. This spatial profile was insensitive to the method of cell activation: stimulation of inputs located at different positions on the dendritic tree as well as antidromic stimulation produced only slight modifications. This component was not blocked by the NMDA antagonist 5-amino-4-phosphonovalerate (AP5) (Collingridge et al., 1983), was greatly reduced by Cd2+, partially reduced by nifedipine, and was increased by Bay-K 8644, providing the evidence that it was largely produced by influx through VDCCs. Blocking postsynaptic Na+ channels with QX-314 greatly reduced the accumulation amplitude, and spatial differences between proximal-dendritic and distal-dendritic regions were less pronounced, suggesting that active sodium conductances contribute significantly to the spatial activation of calcium conductances. Residual spatial differences that persist in QX-314 experiments are consistent with the idea that VDCCs have decreased density on distal-apical dendrites. A second component of accumulation was induced by ionic currents through NMDA receptor channels. It was blocked by AP5, unaffected by QX-314, attenuated and slowed down by elevated calcium buffering, and spatially localized to regions receiving activated synaptic inputs. The magnitude of this component was strongly dependent on the frequency and amplitude of synaptic activation. At high frequency, it was generally very large, often saturating the fura-2 (> 2 microM). Measurements made with the indicator furaptra also showed large localized AP5-sensitive fluorescence changes. Our results suggest that in dendritic regions near activated input fibers calcium levels may reach 2–10 microM. In general, our measurements of calcium dynamics provide an experimental basis for evaluating the spatial distribution of calcium conductances, the spatial distribution of calcium-activated electrophysiological and biochemical processes, and the spatial uniformity of calcium buffering and removal systems in CA1 hippocampal pyramidal cells. The time course and amplitude of Ca2+ transients we measured suggest that activation of Ca(2+)-dependent conductances [e.g., IK(Ca)] will be markedly different for different cellular regions.(ABSTRACT TRUNCATED AT 400 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 12 (11)
Journal of Neuroscience
Vol. 12, Issue 11
1 Nov 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Calcium concentration dynamics produced by synaptic activation of CA1 hippocampal pyramidal cells
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Calcium concentration dynamics produced by synaptic activation of CA1 hippocampal pyramidal cells
WG Regehr, DW Tank
Journal of Neuroscience 1 November 1992, 12 (11) 4202-4223; DOI: 10.1523/JNEUROSCI.12-11-04202.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Calcium concentration dynamics produced by synaptic activation of CA1 hippocampal pyramidal cells
WG Regehr, DW Tank
Journal of Neuroscience 1 November 1992, 12 (11) 4202-4223; DOI: 10.1523/JNEUROSCI.12-11-04202.1992
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.