Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Temporal and harmonic combination-sensitive neurons in the zebra finch's HVc

D Margoliash and ES Fortune
Journal of Neuroscience 1 November 1992, 12 (11) 4309-4326; DOI: https://doi.org/10.1523/JNEUROSCI.12-11-04309.1992
D Margoliash
Department of Organismal Biology and Anatomy, University of Chicago, Illinois 60637.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
ES Fortune
Department of Organismal Biology and Anatomy, University of Chicago, Illinois 60637.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Song learning shapes the response properties of auditory neurons in the song system to become highly selective for the individual bird's own (“autogenous”) song. The auditory representation of autogenous song is achieved in part by neurons that exhibit facilitated responses to combinations of components of song. To understand the circuits that underlie these complex properties, the combination sensitivity of single units in the hyperstriatum ventrale, pars caudale (HVc) of urethane-anesthetized zebra finches was studied. Some neurons exhibited nonlinear temporal summation, spectral summation, or both. The majority of these neurons exhibited low spontaneous rates and phasic responses. Most combination-sensitive neurons required highly accurate copies of sounds derived from the autogenous song and responded weakly to tone bursts, combinations of simple stimuli, or conspecific songs. Temporal combination-sensitive (TCS) neurons required either two or more segments of a single syllable, or two or more syllables of the autogenous song, to elicit a facilitated, excitatory response. TCS neurons integrated auditory input over periods ranging from 80 to 350 msec, although this represents a lower limit. Harmonic combination- sensitive (HCS) neurons required combinations of two harmonics with particular frequency and temporal characteristics that were similar to autogenous song syllables. Both TCS and HCS neurons responded much more weakly when the dynamical spectral features of the autogenous song or syllables were modified than when the dynamical amplitude (waveform) features of the songs were modified. These results suggest that understanding the temporal dynamics of auditory responses in HVc may provide insight into neuronal circuits modified by song learning.

Back to top

In this issue

The Journal of Neuroscience: 12 (11)
Journal of Neuroscience
Vol. 12, Issue 11
1 Nov 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Temporal and harmonic combination-sensitive neurons in the zebra finch's HVc
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Temporal and harmonic combination-sensitive neurons in the zebra finch's HVc
D Margoliash, ES Fortune
Journal of Neuroscience 1 November 1992, 12 (11) 4309-4326; DOI: 10.1523/JNEUROSCI.12-11-04309.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Temporal and harmonic combination-sensitive neurons in the zebra finch's HVc
D Margoliash, ES Fortune
Journal of Neuroscience 1 November 1992, 12 (11) 4309-4326; DOI: 10.1523/JNEUROSCI.12-11-04309.1992
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.