Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Promoter organization and activity of human monoamine oxidase (MAO) A and B genes

QS Zhu, J Grimsby, K Chen and JC Shih
Journal of Neuroscience 1 November 1992, 12 (11) 4437-4446; https://doi.org/10.1523/JNEUROSCI.12-11-04437.1992
QS Zhu
Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles 90033.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Grimsby
Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles 90033.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Chen
Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles 90033.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JC Shih
Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles 90033.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Monoamine oxidase A and B (MAO A and B) play important roles in the metabolism of biogenic and dietary amines and are encoded by two genes derived from a common ancestral gene. The promoter regions for human MAO A and B genes have been characterized using a series of 5′ flanking sequences linked to a human growth hormone reporter gene. When these constructs were transfected into NIH3T3, SHSY-5Y, and COS7 cells, the maximal promoter activity for MAO A was found in a 0.14 kilobase (kb) PvuII/DraII fragment (A0.14) and in a 0.15 kb PstI/NaeI fragment (B0.15) for MAO B. Both fragments are GC-rich, contain potential Sp1 binding sites, and are in the region where the MAO A and B 5′ flanking sequences share the highest identity (approximately 60%). However, the organization of the transcription elements is distinctly different between these two promoters. Fragment A0.14 consists of three Sp1 elements, all in reversed orientations, and lacks a TATA box. Two of the Sp1 sites are located within the downstream 90 base pair (bp) direct repeat, and the third is located at the 3′ end of the upstream 90 bp direct repeat. Fragment B0.15 contains an Sp1-CACCC-Sp1-TATA structure; deletion of any of these elements reduced promoter activity. Additional Sp1 sites, CACCC elements, CCAAT boxes, and direct repeats (four 30 bp direct repeats in MAO A and two 29 bp direct repeats in MAO B) are found in farther-upstream sequences of both genes (1.27 kb for MAO A and mostly in 0.2 kb for MAO B). Inclusion of these sequences decreased promoter activity. The different promoter organization of MAO A and B genes provides the basis for their different tissue- and cell- specific expression.

Back to top

In this issue

The Journal of Neuroscience: 12 (11)
Journal of Neuroscience
Vol. 12, Issue 11
1 Nov 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Promoter organization and activity of human monoamine oxidase (MAO) A and B genes
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Promoter organization and activity of human monoamine oxidase (MAO) A and B genes
QS Zhu, J Grimsby, K Chen, JC Shih
Journal of Neuroscience 1 November 1992, 12 (11) 4437-4446; DOI: 10.1523/JNEUROSCI.12-11-04437.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Promoter organization and activity of human monoamine oxidase (MAO) A and B genes
QS Zhu, J Grimsby, K Chen, JC Shih
Journal of Neuroscience 1 November 1992, 12 (11) 4437-4446; DOI: 10.1523/JNEUROSCI.12-11-04437.1992
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.