Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Patterns of inter- and intralaminar GABAergic connections distinguish striate (V1) and extrastriate (V2, V4) visual cortices and their functionally specialized subdivisions in the rhesus monkey

MF Kritzer, A Cowey and P Somogyi
Journal of Neuroscience 1 November 1992, 12 (11) 4545-4564; DOI: https://doi.org/10.1523/JNEUROSCI.12-11-04545.1992
MF Kritzer
MRC Anatomical Neuropharmacology Unit, Oxford, United Kingdom.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Cowey
MRC Anatomical Neuropharmacology Unit, Oxford, United Kingdom.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Somogyi
MRC Anatomical Neuropharmacology Unit, Oxford, United Kingdom.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Local GABAergic connections are undoubtedly important for the operation of cerebral cortex, including the tuning of receptive field properties of visual cortical neurons. In order to begin to correlate specific configurations of GABAergic networks with particular receptive field properties, we examined the arrangement of GABAergic neurons projecting to foci in compartments of known functional specialization in striate (area V1) and extrastriate (areas V2, V4) cortices of rhesus monkeys. GABAergic cells were detected autoradiographically following microinjections into supragranular, granular, or infragranular layers of 5, 10, or 50 nl of 3H-nipecotic acid, which selectively exploits the GABA reuptake mechanism. These injections produced complex inter- and intralaminar distributions of retrograde perikaryal labeling that was selective for GABA-immunopositive neurons and glia. The pattern of retrograde labeling depended on both the laminar and cytoarchitectonic location of injection sites. In all cases, a high density of labeled neurons was present in the immediate vicinity of injection sites, with the density of labeled neurons decreasing for the most part uniformly with horizontal distance. Injections in supragranular layers produced relatively widespread labeling (up to 1.5–1.7 mm from the center of injections) in upper layers, whereas in granular and infragranular layers, labeling was confined to a radius of 0.25–0.5 mm. Conversely, injections in infragranular layers produced labeling that was widest (up to 1 mm) in lower layers, but more laterally restricted in supragranular layers. Injections in granular layers, on the other hand, produced an even distribution of labeling, 0.6–1.0 mm in diameter, throughout all layers. Comparably placed injections in V1, V2, and V4 resulted in patterns of labeling that were distinguished by features including stepwise increases in the lateral extent of labeling from striate to extrastriate areas, and the circular versus markedly elongated intralaminar distribution of labeled neurons in V1 and V4 versus V2. Further, for superficial injections, labeling was present in all layers in V1 and V2, but did not extent below the top layer V in area V4. These findings offer clear examples of organizational differences in the intrinsic inhibitory connections of visual cortices. The results also demonstrate that the number of GABAergic neurons projecting to any spot in cortex decreases systematically with horizontal distance from the spot, and that radiolabeled cells do not coalesce to form slabs, columns, or clusters. This relatively even distribution of retrogradely labeled cells in the tangential plane is consistent with recent computer simulations (Worgotter and Koch, 1991) that suggest that inhibitory neurons broadly tuned as a population can produce the specific response properties of cortical neurons.(ABSTRACT TRUNCATED AT 400 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 12 (11)
Journal of Neuroscience
Vol. 12, Issue 11
1 Nov 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Patterns of inter- and intralaminar GABAergic connections distinguish striate (V1) and extrastriate (V2, V4) visual cortices and their functionally specialized subdivisions in the rhesus monkey
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Patterns of inter- and intralaminar GABAergic connections distinguish striate (V1) and extrastriate (V2, V4) visual cortices and their functionally specialized subdivisions in the rhesus monkey
MF Kritzer, A Cowey, P Somogyi
Journal of Neuroscience 1 November 1992, 12 (11) 4545-4564; DOI: 10.1523/JNEUROSCI.12-11-04545.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Patterns of inter- and intralaminar GABAergic connections distinguish striate (V1) and extrastriate (V2, V4) visual cortices and their functionally specialized subdivisions in the rhesus monkey
MF Kritzer, A Cowey, P Somogyi
Journal of Neuroscience 1 November 1992, 12 (11) 4545-4564; DOI: 10.1523/JNEUROSCI.12-11-04545.1992
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.