Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Regulation of brain-derived neurotrophic factor and nerve growth factor mRNA in primary cultures of hippocampal neurons and astrocytes

F Zafra, D Lindholm, E Castren, J Hartikka and H Thoenen
Journal of Neuroscience 1 December 1992, 12 (12) 4793-4799; DOI: https://doi.org/10.1523/JNEUROSCI.12-12-04793.1992
F Zafra
Department of Neurochemistry, Max Planck Institute for Psychiatry, Planegg-Martinsried, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D Lindholm
Department of Neurochemistry, Max Planck Institute for Psychiatry, Planegg-Martinsried, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E Castren
Department of Neurochemistry, Max Planck Institute for Psychiatry, Planegg-Martinsried, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Hartikka
Department of Neurochemistry, Max Planck Institute for Psychiatry, Planegg-Martinsried, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H Thoenen
Department of Neurochemistry, Max Planck Institute for Psychiatry, Planegg-Martinsried, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Brain-derived neurotrophic factor (BDNF) and NGF are both expressed by neurons in the hippocampus. In previous studies, it has been demonstrated that both BDNF and NGF mRNA levels are regulated by neuronal activity. Upregulation is predominantly regulated by the glutamate (NMDA and non-NMDA receptors); downregulation, predominantly by the GABA system (Zafra et al., 1990, 1991). In neuronal cultures of the rat hippocampus, potassium depolarization and kainic acid-mediated increases in BDNF and NGF mRNA were eliminated in a dose-dependent manner by the calcium channel blocker nifedipine. Conversely, calcium ionophores (Bay-K8644 and ionomycin) augmented BDNF and NGF mRNA levels by a calmodulin-mediated mechanism. In view of the fact that many potential modulators (conventional transmitters and neuropeptides) of neuronal and astrocytic BDNF and NGF mRNA synthesis may act via the adenylate cyclase system, we studied the effect of forskolin, an activator of adenylate cyclase. Indeed, forskolin enhanced the effects of calcium ionophores and kainic acid on BDNF and NGF mRNA levels. Cytokines, such as interleukin-1 and transforming growth factor-beta 1, which have previously been shown to increase NGF mRNA markedly in astrocytes, were without effect on neuronal BDNF and NGF mRNA levels. In contrast to neuronal cultures, where the regulation of BDNF and NGF mRNA was generally very similar, the regulation in astrocytes was distinctly different. All the cytokines that produce a marked increase in NGF mRNA were without effect on astrocyte BDNF mRNA levels, which under basic conditions were below the detection limit. However, norepinephrine produced a marked elevation of BDNF mRNA in astrocytes, an effect that was further enhanced by glutamate receptor agonists.(ABSTRACT TRUNCATED AT 250 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 12 (12)
Journal of Neuroscience
Vol. 12, Issue 12
1 Dec 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Regulation of brain-derived neurotrophic factor and nerve growth factor mRNA in primary cultures of hippocampal neurons and astrocytes
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Regulation of brain-derived neurotrophic factor and nerve growth factor mRNA in primary cultures of hippocampal neurons and astrocytes
F Zafra, D Lindholm, E Castren, J Hartikka, H Thoenen
Journal of Neuroscience 1 December 1992, 12 (12) 4793-4799; DOI: 10.1523/JNEUROSCI.12-12-04793.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Regulation of brain-derived neurotrophic factor and nerve growth factor mRNA in primary cultures of hippocampal neurons and astrocytes
F Zafra, D Lindholm, E Castren, J Hartikka, H Thoenen
Journal of Neuroscience 1 December 1992, 12 (12) 4793-4799; DOI: 10.1523/JNEUROSCI.12-12-04793.1992
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.