Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log out
  • Log in
  • Subscribe
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • Subscribe
  • My alerts
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Spontaneous synchronous synaptic calcium transients in cultured cortical neurons

TH Murphy, LA Blatter, WG Wier and JM Baraban
Journal of Neuroscience 1 December 1992, 12 (12) 4834-4845; DOI: https://doi.org/10.1523/JNEUROSCI.12-12-04834.1992
TH Murphy
Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
LA Blatter
Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
WG Wier
Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JM Baraban
Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The firing pattern displayed by neuronal aggregates is thought to play a key role in cortical development and physiology. In this study, we have employed optical recording of intracellular calcium to monitor activity of multiple neurons simultaneously in primary cortical cultures. With this approach, we have observed spontaneous synchronous calcium transients among adjacent cortical neurons. These transients appear to be mediated by prominent spontaneous synaptic excitation, as they are enhanced by picrotoxin, a blocker of inhibitory GABAergic transmission, and reduced by antagonism of glutamate receptors or addition of TTX. After picrotoxin treatment, the calcium transients exhibit regular frequency and amplitude, and occur in synchrony with bursts of excitatory synaptic potentials every 10–20 sec. Using electrical stimulation, we have identified a relative refractory period, extending up to 5 sec after a synchronous burst, that may play a role in cell synchronization. NMDA receptor antagonists or reduced extracellular calcium levels lower the amplitude of the calcium transients yet fail to alter their frequency, suggesting that intracellular calcium levels may not be a major determinant of burst frequency. In contrast, mild depolarization with kainic acid (0.5–1 microM) increased burst frequency up to fivefold, suggesting a critical dependence of rhythmic activity on membrane potential. Chronic blockade of electrical activity with TTX beginning a few days after plating of cultures dampens the amplitude and significantly increases the frequency of calcium transients in mature cultures. These studies demonstrate that aggregates of cultured cortical neurons express synchronous firing activity in vitro and that this network activity is dependent in part on neuronal firing during development.

Back to top

In this issue

The Journal of Neuroscience: 12 (12)
Journal of Neuroscience
Vol. 12, Issue 12
1 Dec 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Spontaneous synchronous synaptic calcium transients in cultured cortical neurons
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Spontaneous synchronous synaptic calcium transients in cultured cortical neurons
TH Murphy, LA Blatter, WG Wier, JM Baraban
Journal of Neuroscience 1 December 1992, 12 (12) 4834-4845; DOI: 10.1523/JNEUROSCI.12-12-04834.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Spontaneous synchronous synaptic calcium transients in cultured cortical neurons
TH Murphy, LA Blatter, WG Wier, JM Baraban
Journal of Neuroscience 1 December 1992, 12 (12) 4834-4845; DOI: 10.1523/JNEUROSCI.12-12-04834.1992
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.