Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Increased c-fos expression in spinal neurons after irritation of the lower urinary tract in the rat

LA Birder and WC de Groat
Journal of Neuroscience 1 December 1992, 12 (12) 4878-4889; DOI: https://doi.org/10.1523/JNEUROSCI.12-12-04878.1992
LA Birder
University of Pittsburgh School of Medicine, Department of Pharmacology, Pennsylvania 15261.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
WC de Groat
University of Pittsburgh School of Medicine, Department of Pharmacology, Pennsylvania 15261.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

This study utilized neuronal c-fos expression to examine the spinal pathways involved in processing nociceptive and non-nociceptive afferent input from the lower urinary tract (LUT) of the urethane- anesthetized rat. C-fos protein was detected immunocytochemically in only a small number of cells (< 2 cells/L6 section) in control animals. However, chemical irritation with 1% acetic acid or mechanical stimulation of the LUT markedly increased the number of c-fos-positive neurons (56–180 cells/L6 section) in four regions of the caudal lumbosacral (L6-S1) spinal cord: medial dorsal horn (MDH), lateral dorsal horn, dorsal commissure (DCM), and sacral parasympathetic nucleus (SPN). Only small numbers of c-fos-positive cells were detected in rostral lumbar segments, a region that is thought to receive nociceptive input from the LUT via afferent pathways in sympathetic nerves. The distribution of c-fos-positive cells in the L6 spinal cord varied according to the stimulus (i.e., urethral catheter, bladder distension, or chemical irritation). Distension of the urinary bladder increased the number of c-fos-positive cells mainly in DCM and SPN regions of the cord. In contrast, irritation of the LUT increased c-fos expression largely in DCM and MDH areas. Spinal cord transection (T8 level) did not alter the c-fos expression induced by a catheter or chemical irritation, indicating that gene expression was mediated by spinal pathways. Denervation experiments showed that c-fos expression was induced by activation of afferent pathways in the pelvic and pudendal nerves. These results suggest that neurons in several regions of the spinal cord are involved in processing afferent input from different parts of the LUT. Neurons in the DCM appear to have an important role since they respond to both nociceptive and non- nociceptive inputs and to visceral (pelvic nerve) and somatic (pudendal nerve) afferent pathways. Thus, these neurons may be involved in the mechanisms of visceral-somatic referred pain.

Back to top

In this issue

The Journal of Neuroscience: 12 (12)
Journal of Neuroscience
Vol. 12, Issue 12
1 Dec 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Increased c-fos expression in spinal neurons after irritation of the lower urinary tract in the rat
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Increased c-fos expression in spinal neurons after irritation of the lower urinary tract in the rat
LA Birder, WC de Groat
Journal of Neuroscience 1 December 1992, 12 (12) 4878-4889; DOI: 10.1523/JNEUROSCI.12-12-04878.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Increased c-fos expression in spinal neurons after irritation of the lower urinary tract in the rat
LA Birder, WC de Groat
Journal of Neuroscience 1 December 1992, 12 (12) 4878-4889; DOI: 10.1523/JNEUROSCI.12-12-04878.1992
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.