Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log out
  • Log in
  • Subscribe
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • Subscribe
  • My alerts
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Axonogenesis and morphogenesis in the embryonic zebrafish brain

LS Ross, T Parrett and SS Easter Jr
Journal of Neuroscience 1 February 1992, 12 (2) 467-482; DOI: https://doi.org/10.1523/JNEUROSCI.12-02-00467.1992
LS Ross
Biology Department, University of Michigan, Ann Arbor 48109–1048.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T Parrett
Biology Department, University of Michigan, Ann Arbor 48109–1048.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SS Easter Jr
Biology Department, University of Michigan, Ann Arbor 48109–1048.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We have examined early neuronal differentiation and axonogenesis in the fore- and midbrain of zebrafish embryos to address general issues of early vertebrate brain development. AChE expression and HNK-1 antibody immunoreactivity were used as markers for differentiated neurons and axons, respectively. The pattern of neuronal differentiation followed a stereotyped sequence. AChE-positive cells first appeared between 14 and 16 hr in three small, isolated, bilaterally symmetrical clusters on the surface of the brain. The three clusters--the dorsorostral, ventrorostral, and ventrocaudal clusters--proved to be the progenitors of the telencephalon, ventral diencephalon, and mesencephalic tegmentum, respectively. With further development, more cells were added to these three clusters, and new clusters appeared in the anlage of the epiphysis (18 hr) and in the pituitary and dorsal mesencephalon (by 24 hr). Subsequently, as more neurons differentiated, the gaps of unlabeled cells were reduced; by 48 hr, the cluster boundaries were indistinguishable. Axonogenesis also followed a stereotyped sequence. The first HNK-1-labeled processes arose from the first three clusters of AChE-positive cells and connected the clusters. The earliest axonal growth cones appeared at 16 hr, directed caudally from two to three neurons of the ventrocaudal cluster and pioneering the ventral longitudinal tract. By 18 hr, the tract of the postoptic commissure was initiated by growth cones directed caudally from the ventrorostral cluster toward the ventrocaudal cluster. By 20 hr, axons from the dorsorostral cluster projected ventrally to form the supraoptic tract. The other dorsoventral tracts (the dorsoventral diencephalic tract and the tract of the posterior commissure) became evident between 20 and 24 hr. These observations provide a continuous record of the topological distortions involved in the conversion of the tubular embryonic brain into the contorted adult form. The telencephalon, ventral diencephalon, and hypothalamus originate from the same rostrocaudal level of the neural tube. The pattern of differentiation demonstrated that the early development of the rostral neural tube occurs simultaneously in several independent centers, similar to the overtly segmental development of the hindbrain.

Back to top

In this issue

The Journal of Neuroscience: 12 (2)
Journal of Neuroscience
Vol. 12, Issue 2
1 Feb 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Axonogenesis and morphogenesis in the embryonic zebrafish brain
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Axonogenesis and morphogenesis in the embryonic zebrafish brain
LS Ross, T Parrett, SS Easter
Journal of Neuroscience 1 February 1992, 12 (2) 467-482; DOI: 10.1523/JNEUROSCI.12-02-00467.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Axonogenesis and morphogenesis in the embryonic zebrafish brain
LS Ross, T Parrett, SS Easter
Journal of Neuroscience 1 February 1992, 12 (2) 467-482; DOI: 10.1523/JNEUROSCI.12-02-00467.1992
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.