Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Opioids excite dopamine neurons by hyperpolarization of local interneurons

SW Johnson and RA North
Journal of Neuroscience 1 February 1992, 12 (2) 483-488; DOI: https://doi.org/10.1523/JNEUROSCI.12-02-00483.1992
SW Johnson
Vollum Institute, Oregon Health Sciences University, Portland 97201.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RA North
Vollum Institute, Oregon Health Sciences University, Portland 97201.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Increased activity of dopamine-containing neurons in the ventral tegmental area is necessary for the reinforcing effects of opioids and other abused drugs. Intracellular recordings from these cells in slices of rat brain in vitro showed that opioids do not affect the principal (dopamine-containing) neurons but hyperpolarize secondary (GABA- containing) interneurons. Experiments with agonists and antagonists selective for opioid receptor subtypes indicated that the hyperpolarization of secondary cells involved the mu-receptor. Most principal cells showed spontaneous bicuculline-sensitive synaptic potentials when the extracellular potassium concentration was increased from 2.5 to 6.5 or 10.5 mM; these were prevented by TTX and assumed to result from action potentials arising in slightly depolarized local interneurons. The frequency of these synaptic potentials, but not their amplitudes, was reduced by opioids selective for mu-receptors. It is concluded that hyperpolarization of the interneurons by opioids reduces the spontaneous GABA-mediated synaptic input to the dopamine cells. In vivo, this would lead to excitation of the dopamine cells by disinhibition, which would be expected to contribute to the positive reinforcement seen with mu-receptor agonists such as morphine and heroin.

Back to top

In this issue

The Journal of Neuroscience: 12 (2)
Journal of Neuroscience
Vol. 12, Issue 2
1 Feb 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Opioids excite dopamine neurons by hyperpolarization of local interneurons
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Opioids excite dopamine neurons by hyperpolarization of local interneurons
SW Johnson, RA North
Journal of Neuroscience 1 February 1992, 12 (2) 483-488; DOI: 10.1523/JNEUROSCI.12-02-00483.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Opioids excite dopamine neurons by hyperpolarization of local interneurons
SW Johnson, RA North
Journal of Neuroscience 1 February 1992, 12 (2) 483-488; DOI: 10.1523/JNEUROSCI.12-02-00483.1992
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.