Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Beta-adrenergic receptors: astrocytic localization in the adult visual cortex and their relation to catecholamine axon terminals as revealed by electron microscopic immunocytochemistry

C Aoki
Journal of Neuroscience 1 March 1992, 12 (3) 781-792; DOI: https://doi.org/10.1523/JNEUROSCI.12-03-00781.1992
C Aoki
Center for Neural Science, New York University, New York 10003.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

It has long been recognized that noradrenaline, the most abundant catecholamine within the visual cortex, plays important roles in modulating the sensitivity of cortical neurons to visual stimuli. However, whether or not these noradrenaline effects are confined to a discrete synaptic specialization or mediated by diffuse modulation of a group of synapses has remained an issue open for debate. The aim of this study was to examine the cellular basis for noradrenaline action within the visual cortex of adult rats and cats. To this end, I used electron microscopic immunocytochemistry to examine the relationship between (1) catecholamine axon terminals and beta-adrenergic receptors (beta AR), which, together, may define the effective sphere of noradrenaline modulation; and then (2) these putative sites for catecholamine modulation and axospinous asymmetric junctions where excitatory neurotransmission is likely to dominate. Antibodies against beta AR were used at light and electron microscopic levels on the visual cortex of rat and cat. Rat visual cortex was also labeled simultaneously for beta AR and the catecholamine-synthesizing enzyme, tyrosine hydroxylase (TH), to determine the ultrastructural relationships between catecholamine terminals and beta AR. Immunoperoxidase labeling revealed that beta AR404, a polyclonal antibody directed against the C-terminal tail of hamster lung beta AR (beta 2-type), recognized astrocytic processes predominantly. In contrast, beta AR248, a polyclonal antibody directed against the third cytoplasmic loop, recognized neuronal perikarya as observed in previous studies. Dual labeling for beta AR404 and TH revealed that catecholamine axon terminals that contained numerous vesicles formed direct contacts with astrocytic processes exhibiting beta AR404 immunoreactivity. However, some catecholamine axon terminals that lacked dense clusters of vesicles were positioned away from beta AR404- immunoreactive astrocytes. Frequently, beta AR-immunoreactive astrocytic processes surrounded asymmetric axospinous junctions while also contacting catecholamine axon terminals. These observations support the possibility that, through activation of astrocytic beta AR, noradrenaline modulates astrocytic uptake mechanism for excitatory amino acids, such as L-glutamate. Astrocytic beta AR might also define the effective sphere of catecholamine modulation through alterations in the morphology of distal astrocytic processes and the permeability of gap junctions formed between astrocytes.

Back to top

In this issue

The Journal of Neuroscience: 12 (3)
Journal of Neuroscience
Vol. 12, Issue 3
1 Mar 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Beta-adrenergic receptors: astrocytic localization in the adult visual cortex and their relation to catecholamine axon terminals as revealed by electron microscopic immunocytochemistry
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Beta-adrenergic receptors: astrocytic localization in the adult visual cortex and their relation to catecholamine axon terminals as revealed by electron microscopic immunocytochemistry
C Aoki
Journal of Neuroscience 1 March 1992, 12 (3) 781-792; DOI: 10.1523/JNEUROSCI.12-03-00781.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Beta-adrenergic receptors: astrocytic localization in the adult visual cortex and their relation to catecholamine axon terminals as revealed by electron microscopic immunocytochemistry
C Aoki
Journal of Neuroscience 1 March 1992, 12 (3) 781-792; DOI: 10.1523/JNEUROSCI.12-03-00781.1992
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.