Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Cholinergic inhibition of short (outer) hair cells of the chick's cochlea

PA Fuchs and BW Murrow
Journal of Neuroscience 1 March 1992, 12 (3) 800-809; DOI: https://doi.org/10.1523/JNEUROSCI.12-03-00800.1992
PA Fuchs
Department of Physiology, University of Colorado School of Medicine, Denver 80262.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
BW Murrow
Department of Physiology, University of Colorado School of Medicine, Denver 80262.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Cochlear hair cells are thought to be inhibited by the release of ACh from efferent neurons. Several studies have implicated Ca2+ as a postsynaptic intermediary in hair cell inhibition, but its role remains unproven. We have made whole-cell, tight-seal recordings from single short hair cells (the avian analog of outer hair cells in the mammalian cochlea), isolated from the chick's cochlea, to determine the mechanism of cholinergic inhibition. These cells hyperpolarized upon exposure to ACh, although a brief depolarization preceded the much larger, longer- lasting hyperpolarization. In voltage clamp ACh evoked an outward current that reversed in sign near the K+ equilibrium potential. A small, transient inward current preceded the predominant outward current. The ACh-evoked K+ current depended on Ca2+ in the external saline, or could be prevented when the cell was dialyzed with the rapid Ca2+ buffer BAPTA. In BAPTA-loaded cells a residual inward current was seen. This activated with very little delay upon exposure of the cell to ACh and reversed near 0 mV membrane potential. Thus, the hair cell ACh receptor appears to be a nonspecific cation channel through which Ca2+ enters and triggers the opening of nearby Ca(2+)-activated K+ channels. However, the ACh-evoked K+ channels are not the same as the “maxi” K+ channels activated by Ca2+ influx through voltage-gated Ca2+ channels in these same cells.

Back to top

In this issue

The Journal of Neuroscience: 12 (3)
Journal of Neuroscience
Vol. 12, Issue 3
1 Mar 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Cholinergic inhibition of short (outer) hair cells of the chick's cochlea
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Cholinergic inhibition of short (outer) hair cells of the chick's cochlea
PA Fuchs, BW Murrow
Journal of Neuroscience 1 March 1992, 12 (3) 800-809; DOI: 10.1523/JNEUROSCI.12-03-00800.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Cholinergic inhibition of short (outer) hair cells of the chick's cochlea
PA Fuchs, BW Murrow
Journal of Neuroscience 1 March 1992, 12 (3) 800-809; DOI: 10.1523/JNEUROSCI.12-03-00800.1992
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.