Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log out
  • Log in
  • Subscribe
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • Subscribe
  • My alerts
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Responses of human mechanoreceptive afferents to embossed dot arrays scanned across fingerpad skin

JR Phillips, RS Johansson and KO Johnson
Journal of Neuroscience 1 March 1992, 12 (3) 827-839; DOI: https://doi.org/10.1523/JNEUROSCI.12-03-00827.1992
JR Phillips
University Laboratory of Physiology, Oxford, United Kingdom.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RS Johansson
University Laboratory of Physiology, Oxford, United Kingdom.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
KO Johnson
University Laboratory of Physiology, Oxford, United Kingdom.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The spatial resolving capacities of the four classes of mechanoreceptive afferents innervating human fingerpad skin were investigated to determine which class sets the limit of tactile spatial resolution for scanning stimuli. The stimulus consisted of an array of embossed dots (0.7 mm diameter, 0.5 mm high) arranged in a tetragonal pattern with dot spacing decreasing linearly from 6.4 mm at one end of the array to 0.87 mm at the other. The pattern was wrapped around a drum and repeatedly scanned across the receptive field of single afferents by continuously rotating the drum. Responses to many closely spaced scans were obtained by imposing a lateral shift of the pattern between each revolution. Impulses were recorded microneurographically. Responses were plotted in raster form to produce a neural image of the pattern. Responses of rapidly and slowly adapting type I (FAI and SAI) afferents resolved dots down to a spacing of about 1.5 mm. Responses of type II (FAII and SAII) afferents resolved dots down to a spacing of about 3.5 mm. Variation in scanning speed (range, 20–90 mm/sec) and contact force (range, 0.4–1.0 N) had minimal effects on spatial resolution of all afferents. The response clusters associated with individual widely spaced dots were used to investigate receptive field structure. FAI and SAI fields (mean areas, 6.1 and 4.8 mm2, respectively) each contained several zones of maximal sensitivity. FAI fields had five to eight such zones, whereas SAI fields had three to five such zones. As dot spacing decreased, neighboring dots interacted to affect the responses associated with the individual zones within a field. Initially, one or more zones were deactivated, effectively reducing receptive field size and allowing representation of finer spatial detail than would be predicted from the overall area of the receptive field. At very close dot spacings responses were only obtained when more than one sensitive zone within a field were simultaneously activated by different dots.

Back to top

In this issue

The Journal of Neuroscience: 12 (3)
Journal of Neuroscience
Vol. 12, Issue 3
1 Mar 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Responses of human mechanoreceptive afferents to embossed dot arrays scanned across fingerpad skin
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Responses of human mechanoreceptive afferents to embossed dot arrays scanned across fingerpad skin
JR Phillips, RS Johansson, KO Johnson
Journal of Neuroscience 1 March 1992, 12 (3) 827-839; DOI: 10.1523/JNEUROSCI.12-03-00827.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Responses of human mechanoreceptive afferents to embossed dot arrays scanned across fingerpad skin
JR Phillips, RS Johansson, KO Johnson
Journal of Neuroscience 1 March 1992, 12 (3) 827-839; DOI: 10.1523/JNEUROSCI.12-03-00827.1992
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.