Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log out
  • Log in
  • Subscribe
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • Subscribe
  • My alerts
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Demonstration of coexisting catecholamine (dopamine), amino acid (GABA), and peptide (NPY) involved in inhibition of melanotrope cell activity in Xenopus laevis: a quantitative ultrastructural, freeze- substitution immunocytochemical study

EP de Rijk, FJ van Strien and EW Roubos
Journal of Neuroscience 1 March 1992, 12 (3) 864-871; DOI: https://doi.org/10.1523/JNEUROSCI.12-03-00864.1992
EP de Rijk
Department of Animal Physiology, Faculty of Science, University of Nijmegen, The Netherlands.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
FJ van Strien
Department of Animal Physiology, Faculty of Science, University of Nijmegen, The Netherlands.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
EW Roubos
Department of Animal Physiology, Faculty of Science, University of Nijmegen, The Netherlands.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

This quantitative ultrastructural immunocytochemical study demonstrates the coexistence of a catecholamine [dopamine (DA)], an amino acid (GABA), and a neuropeptide [neuropeptide Y (NPY)] in axon varicosities innervating the pars intermedia of Xenopus laevis. The varicosities are assumed to control the pars intermedia melanotrope cells, which regulate skin color during the physiological process of background adaptation. Varicosity profiles appear to abut melanotrope cells and folliculostellate cells, star-shaped cells that intimately contact the melanotropes. All varicosity profiles contain two morphological types of vesicle. Monolabeling studies on routinely fixed and freeze- substituted tissues showed that the small, electron-lucent vesicles store GABA, whereas DA and NPY occur in larger, electron-dense ones. Double and triple labeling experiments, in which the degree of immunoreactivity was quantified per varicosity profile and per vesicle, led to the conclusion that (1) DA, GABA, and NPY coexist within almost all varicosity profiles and (2) DA and NPY are costored within electron- dense vesicles. Varicosity profiles that about melanotrope cells show a much higher ratio between the numbers of electron-lucent and electron- dense vesicles than varicosities contacting folliculostellate cells (15.8 and 3.3, respectively). This differential distribution is in line with the previous demonstration that, in contrast to GABA, NPY does not act directly on the melanotrope cells but indirectly, by controlling the activity of the folliculostellate cells.

Back to top

In this issue

The Journal of Neuroscience: 12 (3)
Journal of Neuroscience
Vol. 12, Issue 3
1 Mar 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Demonstration of coexisting catecholamine (dopamine), amino acid (GABA), and peptide (NPY) involved in inhibition of melanotrope cell activity in Xenopus laevis: a quantitative ultrastructural, freeze- substitution immunocytochemical study
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Demonstration of coexisting catecholamine (dopamine), amino acid (GABA), and peptide (NPY) involved in inhibition of melanotrope cell activity in Xenopus laevis: a quantitative ultrastructural, freeze- substitution immunocytochemical study
EP de Rijk, FJ van Strien, EW Roubos
Journal of Neuroscience 1 March 1992, 12 (3) 864-871; DOI: 10.1523/JNEUROSCI.12-03-00864.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Demonstration of coexisting catecholamine (dopamine), amino acid (GABA), and peptide (NPY) involved in inhibition of melanotrope cell activity in Xenopus laevis: a quantitative ultrastructural, freeze- substitution immunocytochemical study
EP de Rijk, FJ van Strien, EW Roubos
Journal of Neuroscience 1 March 1992, 12 (3) 864-871; DOI: 10.1523/JNEUROSCI.12-03-00864.1992
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.