Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Co-release of acetylcholine and GABA by the starburst amacrine cells

DM O'Malley, JH Sandell and RH Masland
Journal of Neuroscience 1 April 1992, 12 (4) 1394-1408; DOI: https://doi.org/10.1523/JNEUROSCI.12-04-01394.1992
DM O'Malley
Department of Physiology, Harvard Medical School, Boston, Massachusetts 02114.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JH Sandell
Department of Physiology, Harvard Medical School, Boston, Massachusetts 02114.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RH Masland
Department of Physiology, Harvard Medical School, Boston, Massachusetts 02114.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Rabbit retinas were isolated from the eye and maintained in vitro. When they were incubated for 60 min in the presence of 3H-GABA, subsequent autoradiography showed radioactivity to be present primarily in amacrine cells. Under these conditions, most of the radioactivity contained in the retinas remained in the chemical form of GABA. Autoradiography and immunohistochemistry of alternate sections showed the amacrine cells that accumulate 3H-GABA to be the same cells that contain endogenous GABA immunoreactivity. These include the starburst cells, the indoleamine-accumulating cells, and other, as yet unidentified amacrine cells. The localization confirms previous immunohistochemical findings. When retinas containing 3H-GABA were expressed to elevated concentrations of K+, their content of 3H-GABA decreased. Autoradiography showed a reduced 3H-GABA content in all of the cells that contained 3H-GABA. Since those include the starburst cells, previously shown to be cholinergic, the finding demonstrates that the starburst cells release both ACh and GABA. Retinas simultaneously labeled with 14C-GABA and 3H-ACh were superfused, and the release of radioactive compounds from the retina was studied. Depolarization by elevated K+ caused an increased recovery of both ACh and GABA in the superfusate, but the predominant mechanisms of their release appeared to be different. The stimulated release of ACh was entirely Ca2+ dependent, while the release of radioactivity originating from GABA was much less so. A concentration-dependent counterflux (homoexchange) of intracellular GABA was demonstrated by raising the extracellular concentration of GABA (or nipecotic acid). These results suggest that a large outward flux of GABA occurs via the GABA transporter, probably by the potential-sensitive mechanism studied by Schwartz (1982, 1987). Stimulation of double-labeled retinas by flashing light or moving bars always increased the release of ACh, and the release was entirely dependent on the presence of extracellular Ca2+. Stimulation with light never caused a detectable release of GABA. This was unexpected, since the two neurotransmitters are present in the same amacrine cells: stimulation adequate to release one neurotransmitter should release both.(ABSTRACT TRUNCATED AT 400 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 12 (4)
Journal of Neuroscience
Vol. 12, Issue 4
1 Apr 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Co-release of acetylcholine and GABA by the starburst amacrine cells
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Co-release of acetylcholine and GABA by the starburst amacrine cells
DM O'Malley, JH Sandell, RH Masland
Journal of Neuroscience 1 April 1992, 12 (4) 1394-1408; DOI: 10.1523/JNEUROSCI.12-04-01394.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Co-release of acetylcholine and GABA by the starburst amacrine cells
DM O'Malley, JH Sandell, RH Masland
Journal of Neuroscience 1 April 1992, 12 (4) 1394-1408; DOI: 10.1523/JNEUROSCI.12-04-01394.1992
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.