Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Endogenous NGF and nerve impulses regulate the collateral sprouting of sensory axons in the skin of the adult rat

J Diamond, M Holmes and M Coughlin
Journal of Neuroscience 1 April 1992, 12 (4) 1454-1466; DOI: https://doi.org/10.1523/JNEUROSCI.12-04-01454.1992
J Diamond
Department of Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Holmes
Department of Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Coughlin
Department of Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We have investigated the co-involvement of endogenous NGF and impulses in the collateral sprouting of cutaneous sensory nerves in adult rats, specifically the A delta-axons involved in mechanonociception and the C- fibers that mediate heat nociception. Their collateral sprouting was measured by the progressive expansion, respectively, of the behaviorally defined “pinch” and “heat” fields into surrounding denervated skin (the light-touch A alpha-fibers do not sprout in adult mammals). The expansions of such “isolated” fields were totally prevented in animals injected daily with anti-NGF serum, but developed normally after treatment was discontinued. Light microscopic and EM examination of the skin confirmed that the effect of the anti-NGF treatment was attributable to its prevention of collateral sprouting. Initiation of treatment would also rapidly halt sprouting already in progress. Finally, intradermal injections of purified NGF protein would not only increase the rate of nociceptive fiber sprouting, but also evoke sprouting de novo within normally innervated skin (again, A alpha- axons were unaffected). We conclude that the collateral sprouting of intact nociceptive nerves following partial denervation of skin is entirely dependent on endogenous NGF. The observed latency of this sprouting was 10–12 d; we estimate, however, that at least 2 d of field expansion is required for its reliable detection. Thus, about 8–10 d are required for NGF levels in the skin to rise to effective levels, and for the neurons to respond and initiate sprouting. From indirect findings, the NGF component of this sprouting latency appears to be about 2 d. In accord with earlier findings, the remaining “initiation time” was reduced by 5–6 d if the neurons were briefly excited, even 2 d prior to the isolation of their fields. Unexpectedly, this phenomenon of “precocious sprouting” requires that endogenous NGF be available; the sprouting latency reverted to normal values when the conditioning impulses were evoked during a 2 d anti-NGF “umbrella.” In contrast to the impulse-sensitive neuronal mechanisms involved in the initiation of sprouting, those underlying the sprouting rate were unaffected by nerve activity and were entirely dependent on the level of endogenous NGF. We suggest that interactions like that revealed in these studies between a sprouting agent and impulses that seem to prime the neuron's response to it contribute to plasticity within the nervous system.

Back to top

In this issue

The Journal of Neuroscience: 12 (4)
Journal of Neuroscience
Vol. 12, Issue 4
1 Apr 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Endogenous NGF and nerve impulses regulate the collateral sprouting of sensory axons in the skin of the adult rat
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Endogenous NGF and nerve impulses regulate the collateral sprouting of sensory axons in the skin of the adult rat
J Diamond, M Holmes, M Coughlin
Journal of Neuroscience 1 April 1992, 12 (4) 1454-1466; DOI: 10.1523/JNEUROSCI.12-04-01454.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Endogenous NGF and nerve impulses regulate the collateral sprouting of sensory axons in the skin of the adult rat
J Diamond, M Holmes, M Coughlin
Journal of Neuroscience 1 April 1992, 12 (4) 1454-1466; DOI: 10.1523/JNEUROSCI.12-04-01454.1992
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.