Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Sensory nerves in adult rats regenerate and restore sensory function to the skin independently of endogenous NGF

J Diamond, A Foerster, M Holmes and M Coughlin
Journal of Neuroscience 1 April 1992, 12 (4) 1467-1476; DOI: https://doi.org/10.1523/JNEUROSCI.12-04-01467.1992
J Diamond
Department of Biomedical Science, McMaster University, Hamilton, Ontario, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Foerster
Department of Biomedical Science, McMaster University, Hamilton, Ontario, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Holmes
Department of Biomedical Science, McMaster University, Hamilton, Ontario, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Coughlin
Department of Biomedical Science, McMaster University, Hamilton, Ontario, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We have investigated the possible roles of NGF, and of impulse activity, in the regeneration of sensory nerves. Unexpectedly, the ability of crushed axons to regrow and to restore functional recovery of three sensory modalities in adult rat skin (A alpha-mediated touch, A delta-mediated mechanonociception, and C-fiber-mediated heat nociception) was totally unaffected by anti-NGF treatment. This finding applied even when the anti-NGF dosage was almost eight times that which entirely blocked collateral sprouting of the undamaged axons of both classes of nociceptive nerves (the A alpha-axons do not sprout in adult animals). In the same anti-NGF-treated animal, regeneration would proceed normally on the one side, while collateral sprouting was prevented on the other. Light microscopic and EM examination revealed that in the denervated skin the regenerating axons utilized the same dermal perineurial pathways followed by collaterally sprouting axons. Regeneration within these antibody-accessible pathways progressed normally during anti-NGF treatment, extending 1–2 cm beyond the former field borders, that is, into territory whose invasion by collaterally sprouting axons was totally blocked. The blood-nerve barrier is absent within the degenerating peripheral nerve trunk, a putative NGF source for regenerating fibers but not for sprouting ones. The NGF-independent regeneration was also found to be unaffected when putative spinal cord sources of NGF were eliminated by dorsal root excision. Anti-NGF treatment also failed to block regeneration across 4 mm excision gaps in the nerve trunk. The daily anti-NGF regime continued to be effective for at least 8 weeks, at which time newly evoked collateral sprouting could still be blocked. Exogenous NGF, in doses that evoke collateral sprouting de novo in normal skin, failed to influence regeneration. Finally, an electrical stimulus regime, which markedly reduces the latency of collateral sprouting, failed to affect the time to arrival of regenerating axons at the skin, or the rate of their arborization in it. We conclude that, in striking contrast to their collateral sprouting, the regeneration of nociceptive axons occurs independently of endogenous NGF and is unaffected by impulse activity. These findings further support the proposal that these two growth behaviors have basically different biological functions in the organism.

Back to top

In this issue

The Journal of Neuroscience: 12 (4)
Journal of Neuroscience
Vol. 12, Issue 4
1 Apr 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Sensory nerves in adult rats regenerate and restore sensory function to the skin independently of endogenous NGF
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Sensory nerves in adult rats regenerate and restore sensory function to the skin independently of endogenous NGF
J Diamond, A Foerster, M Holmes, M Coughlin
Journal of Neuroscience 1 April 1992, 12 (4) 1467-1476; DOI: 10.1523/JNEUROSCI.12-04-01467.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Sensory nerves in adult rats regenerate and restore sensory function to the skin independently of endogenous NGF
J Diamond, A Foerster, M Holmes, M Coughlin
Journal of Neuroscience 1 April 1992, 12 (4) 1467-1476; DOI: 10.1523/JNEUROSCI.12-04-01467.1992
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.