Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Pre-oligodendrocytes from adult human CNS

RC Armstrong, HH Dorn, CV Kufta, E Friedman and ME Dubois-Dalcq
Journal of Neuroscience 1 April 1992, 12 (4) 1538-1547; https://doi.org/10.1523/JNEUROSCI.12-04-01538.1992
RC Armstrong
Laboratory of Viral and Molecular Pathogenesis, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
HH Dorn
Laboratory of Viral and Molecular Pathogenesis, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
CV Kufta
Laboratory of Viral and Molecular Pathogenesis, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E Friedman
Laboratory of Viral and Molecular Pathogenesis, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
ME Dubois-Dalcq
Laboratory of Viral and Molecular Pathogenesis, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

CNS remyelination and functional recovery often occur after experimental demyelination in adult rodents. This has been attributed to the ability of mature oligodendrocytes and/or their precursor cells to divide and regenerate in response to signals in demyelinating lesions. To determine whether oligodendrocyte precursor cells exist in the adult human CNS, we have cultured white matter from patients undergoing partial temporal lobe resection for intractable epilepsy. These cultures contained a population of process-bearing cells that expressed antigens recognized by the O4 monoclonal antibody, but these cells did not express galactocerebroside (a marker for oligodendrocytes), glial fibrillary acidic protein (a marker for astrocytes), or vimentin. Selective elimination of O4-positive (O4+) cells by complement-mediated lysis resulted in inhibition of oligodendrocyte development in vitro. Since O4+ cells have an antigenic phenotype reminiscent of the rat adult oligodendrocyte-type 2 astrocyte progenitor and appear to develop into oligodendrocytes rather than type 2 astrocytes with time in culture, we call them “pre-oligodendrocytes.” Neither pre-oligodendrocytes nor oligodendrocytes incorporated 3H- thymidine in response to rat astrocyte-conditioned medium, platelet- derived growth factor, insulin-like growth factor (IGF-1), or basic fibroblast growth factor (bFGF). However, IGF-1 increased the relative abundance of oligodendrocytes to pre-oligodendrocytes, while bFGF had the opposite effect. Cells with the antigenic phenotype of pre- oligodendrocytes were also identified in tissue prints of adult human white matter. We propose that, in human demyelinating diseases such as multiple sclerosis, pre-oligodendrocytes may divide and/or migrate in response to signals present in demyelinated lesions and thus facilitate remyelination.

Back to top

In this issue

The Journal of Neuroscience: 12 (4)
Journal of Neuroscience
Vol. 12, Issue 4
1 Apr 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Pre-oligodendrocytes from adult human CNS
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Pre-oligodendrocytes from adult human CNS
RC Armstrong, HH Dorn, CV Kufta, E Friedman, ME Dubois-Dalcq
Journal of Neuroscience 1 April 1992, 12 (4) 1538-1547; DOI: 10.1523/JNEUROSCI.12-04-01538.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Pre-oligodendrocytes from adult human CNS
RC Armstrong, HH Dorn, CV Kufta, E Friedman, ME Dubois-Dalcq
Journal of Neuroscience 1 April 1992, 12 (4) 1538-1547; DOI: 10.1523/JNEUROSCI.12-04-01538.1992
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.