Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

The phase and magnitude of hair cell receptor potentials and frequency tuning in the guinea pig cochlea

M Kossl and IJ Russell
Journal of Neuroscience 1 May 1992, 12 (5) 1575-1586; DOI: https://doi.org/10.1523/JNEUROSCI.12-05-01575.1992
M Kossl
School of Biological Sciences, University of Sussex, Falmer, Brighton, England.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
IJ Russell
School of Biological Sciences, University of Sussex, Falmer, Brighton, England.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Voltage responses to tones were recorded intracellularly from inner (IHC) and outer (OHC) hair cells in the basal turn of the guinea pig cochlea. Tone-evoked voltage responses were also recorded extracellularly from fluid-filled spaces adjacent to the hair cells and from supporting cells. The AC component of the OHC voltage responses to tones at frequencies between 8 and 24 kHz and those recorded extracellularly were remarkably similar with respect to phase as a function of sound level, but the magnitude of the AC response was 2–10 times larger when recorded intracellularly from an OHC. At frequencies more than half an octave below the characteristic frequency (CF), the phase of OHC AC response was independent of level, and the slope of the magnitude/level functions was 1 dB/db. At levels exceeding about 70 dB SPL, the slopes became less steep and depolarizing IHC and OHC DC responses appeared. At frequencies one-half an octave below CF and at frequencies between one-third and one-half an octave above CF, notches were present in the AC/level function between 70–100 dB SPL that were accompanied by a sudden phase lag of -180 degrees. These frequency- and level-dependent characteristics were also present in relatively insensitive preparations and were attributed to a change in the phase of OHC excitation due to level-dependent changes in the relative stiffness of the mechanical components of the cochlear partition. At CF the detection thresholds of the OHC AC response and IHC DC response and slopes of the response/level functions were similar. At sound levels around 60 dB SPL, the AC signal began to phase lead, amounting to approximately 90 degrees at 70 dB SPL. Within the same range of levels, the OHC DC potentials first appeared and the IHC DC response began to saturate. At frequencies just above the CF, the phase of the AC component increased with level to a lead of about 180 degrees. OHC and IHC tuning curves are comparable in the tip region, but they differ in that the low- and high-frequency shoulders of the OHC AC tuning curves are more sensitive by 10–30 dB SPL. On the basis of the frequency- and level-dependent characteristics of the IHC and OHC responses, it is proposed that OHC AC potentials provide a measure of the phase and magnitude of the proposed electromechanical feedback of the cochlear partition that enhance frequency tuning in the cochlea.

Back to top

In this issue

The Journal of Neuroscience: 12 (5)
Journal of Neuroscience
Vol. 12, Issue 5
1 May 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The phase and magnitude of hair cell receptor potentials and frequency tuning in the guinea pig cochlea
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
The phase and magnitude of hair cell receptor potentials and frequency tuning in the guinea pig cochlea
M Kossl, IJ Russell
Journal of Neuroscience 1 May 1992, 12 (5) 1575-1586; DOI: 10.1523/JNEUROSCI.12-05-01575.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
The phase and magnitude of hair cell receptor potentials and frequency tuning in the guinea pig cochlea
M Kossl, IJ Russell
Journal of Neuroscience 1 May 1992, 12 (5) 1575-1586; DOI: 10.1523/JNEUROSCI.12-05-01575.1992
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.