Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

The role of premotor interneurons in phase-dependent modulation of a cutaneous reflex during swimming in Xenopus laevis embryos

KT Sillar and A Roberts
Journal of Neuroscience 1 May 1992, 12 (5) 1647-1657; DOI: https://doi.org/10.1523/JNEUROSCI.12-05-01647.1992
KT Sillar
Department of Zoology, University of Bristol, England.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Roberts
Department of Zoology, University of Bristol, England.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Phase-dependent reflex modulation during fictive “swimming” in Xenopus laevis embryos has been examined with intracellular recordings from rhythmically active spinal neurons. (1) At rest, cutaneous trunk or tail skin stimulation evokes EPSPs in motoneurons and premotor excitatory and inhibitory interneurons of the opposite motor system. During swimming, these EPSPs can only be evoked during the depolarized phase of activity and can then produce extra action potentials that lead to phase-dependent reflexes in ventral roots. On the stimulated side, IPSPs are evoked in rhythmic neurons that can block centrally generated action potentials if the stimulus coincides with the inhibited phase of the swimming cycle. This inhibition suppresses ventral root discharge in a phase-dependent manner. (2) The presence of premotor interneurons in the crossed reflex pathway suggests two parallel routes for cutaneous excitation to reach the motoneurons, one direct and the other indirect through excitatory premotor interneurons. During swimming, the crossed excitation through both routes is gated by the rhythm-generating circuit to allow summation in motoneurons only during the depolarized phase of the swim cycle. (3) Following phase- dependent reflexes, the frequency of swimming is raised for several cycles, a phenomenon that requires sensory activation of premotor rhythm-generating interneurons. The results provide evidence on the role of identified premotor spinal interneurons in phase-dependent reflex modulation.

Back to top

In this issue

The Journal of Neuroscience: 12 (5)
Journal of Neuroscience
Vol. 12, Issue 5
1 May 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The role of premotor interneurons in phase-dependent modulation of a cutaneous reflex during swimming in Xenopus laevis embryos
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
The role of premotor interneurons in phase-dependent modulation of a cutaneous reflex during swimming in Xenopus laevis embryos
KT Sillar, A Roberts
Journal of Neuroscience 1 May 1992, 12 (5) 1647-1657; DOI: 10.1523/JNEUROSCI.12-05-01647.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
The role of premotor interneurons in phase-dependent modulation of a cutaneous reflex during swimming in Xenopus laevis embryos
KT Sillar, A Roberts
Journal of Neuroscience 1 May 1992, 12 (5) 1647-1657; DOI: 10.1523/JNEUROSCI.12-05-01647.1992
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.