Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Regional distribution and developmental expression of epidermal growth factor and transforming growth factor-alpha mRNA in mouse brain by a quantitative nuclease protection assay

LM Lazar and M Blum
Journal of Neuroscience 1 May 1992, 12 (5) 1688-1697; DOI: https://doi.org/10.1523/JNEUROSCI.12-05-01688.1992
LM Lazar
Fishberg Research Center in Neurobiology, Mount Sinai Medical Center, New York, New York 10029.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Blum
Fishberg Research Center in Neurobiology, Mount Sinai Medical Center, New York, New York 10029.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A solution-hybridization ribonuclease-protection assay was used to identify epidermal growth factor (EGF) mRNA in mouse brain and to compare the regional and developmental levels of EGF gene expression in the CNS with those of its structural homolog, transforming growth factor-alpha (TGF-alpha). Adult brain regions examined included brainstem, cerebellum, cerebral cortex, hippocampus, basal hypothalamus, olfactory bulb, olfactory tubercle, striatum, and thalamus. While both EGF and TGF-alpha mRNAs were detected in all regions, TGF-alpha mRNA levels were 15–170 times higher, ranging from 0.39 (cerebellum and cerebral cortex) to 2.93 (striatum) pg TGF-alpha mRNA/micrograms total cytoplasmic RNA. In contrast, EGF mRNA levels ranged from 11 to 36 fg EGF mRNA/micrograms, with the highest regional concentrations observed in olfactory bulb, basal hypothalamus, and cerebellum. In our comparison between sexes, no significant male-female differences in EGF or TGF-alpha mRNA levels were observed for any region of adult brain. However, in the pituitary gland, consisting of both endocrine and neural elements, EGF and TGF-alpha mRNA levels were significantly higher in males (234 and 215 fg/micrograms, respectively) than in females (172 and 118 fg/micrograms, respectively). An examination of growth factor gene expression in the developing CNS revealed EGF and TGF-alpha mRNAs detectable as early as embryonic day 14 (earliest time point studied). While gene expression for both peptides continued into the postnatal period, EGF and TGF-alpha mRNA levels were nearly equal to adult concentrations by postnatal day 10. Taken together, our findings provide evidence for the synthesis of EGF in brain and suggest a role for both EGF and TGF-alpha in the development and support of the mammalian CNS.

Back to top

In this issue

The Journal of Neuroscience: 12 (5)
Journal of Neuroscience
Vol. 12, Issue 5
1 May 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Regional distribution and developmental expression of epidermal growth factor and transforming growth factor-alpha mRNA in mouse brain by a quantitative nuclease protection assay
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Regional distribution and developmental expression of epidermal growth factor and transforming growth factor-alpha mRNA in mouse brain by a quantitative nuclease protection assay
LM Lazar, M Blum
Journal of Neuroscience 1 May 1992, 12 (5) 1688-1697; DOI: 10.1523/JNEUROSCI.12-05-01688.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Regional distribution and developmental expression of epidermal growth factor and transforming growth factor-alpha mRNA in mouse brain by a quantitative nuclease protection assay
LM Lazar, M Blum
Journal of Neuroscience 1 May 1992, 12 (5) 1688-1697; DOI: 10.1523/JNEUROSCI.12-05-01688.1992
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.