Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

On the role of nerve growth factor in the development of myelinated nociceptors

GR Lewin, AM Ritter and LM Mendell
Journal of Neuroscience 1 May 1992, 12 (5) 1896-1905; DOI: https://doi.org/10.1523/JNEUROSCI.12-05-01896.1992
GR Lewin
Department of Neurobiology and Behavior, State University of New York, Stony Brook 11794.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
AM Ritter
Department of Neurobiology and Behavior, State University of New York, Stony Brook 11794.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
LM Mendell
Department of Neurobiology and Behavior, State University of New York, Stony Brook 11794.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We have previously demonstrated that administration of antisera against NGF (anti-NGF) can have profound effects on developing primary afferents (Ritter et al., 1991). Chronic administration of anti-NGF to rats beginning on the day of birth results in a severe depletion of cutaneous A delta high-threshold mechanoreceptors (HTMRs) from the sural nerve. Here we have carried out further experiments in order to define the period of time over which this change in the cutaneous afferent population can be produced, and to investigate a possible mechanism for the change. Treatment with anti-NGF from postnatal day (PND) 0–14 resulted in a depletion of cutaneous A delta HTMRs from the sural nerve and also a 20% loss of sensory neurons. However, treatment from PND 2–14 produced an identical deficit of HTMRs without any accompanying cell death. Thus, the depletion of cutaneous A delta HTMRs can be achieved in the absence of cell death induced by anti-NGF treatment. It was also found that a 7 d treatment from PND 4–11 was sufficient to reproduce this effect, but that 7 d treatments earlier (PND 2–9) or later (PND 7–14) within the first 2 weeks were much less effective. This critical period, PND 4–11, corresponds to a period of anatomical change in the innervation of the skin, from epidermal innervation to primarily dermal innervation (Fitzgerald, 1967; Reynolds et al., 1991). In every case where anti-NGF treatment reduced the proportion of HTMRs, there was a reciprocal increase in the proportion of sensitive A delta hair follicle (D-hair) afferents. We hypothesize that in the absence of NGF, developing cutaneous A delta HTMRs do not die but innervate novel targets in the dermis and become D-hair afferents instead.

Back to top

In this issue

The Journal of Neuroscience: 12 (5)
Journal of Neuroscience
Vol. 12, Issue 5
1 May 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
On the role of nerve growth factor in the development of myelinated nociceptors
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
On the role of nerve growth factor in the development of myelinated nociceptors
GR Lewin, AM Ritter, LM Mendell
Journal of Neuroscience 1 May 1992, 12 (5) 1896-1905; DOI: 10.1523/JNEUROSCI.12-05-01896.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
On the role of nerve growth factor in the development of myelinated nociceptors
GR Lewin, AM Ritter, LM Mendell
Journal of Neuroscience 1 May 1992, 12 (5) 1896-1905; DOI: 10.1523/JNEUROSCI.12-05-01896.1992
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.