Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log out
  • Log in
  • Subscribe
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • Subscribe
  • My alerts
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

L-AP4 inhibits calcium currents and synaptic transmission via a G- protein-coupled glutamate receptor

PQ Trombley and GL Westbrook
Journal of Neuroscience 1 June 1992, 12 (6) 2043-2050; DOI: https://doi.org/10.1523/JNEUROSCI.12-06-02043.1992
PQ Trombley
Department of Biology, University of Oregon, Eugene 97403.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
GL Westbrook
Department of Biology, University of Oregon, Eugene 97403.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The AP4 (2-amino-4-phosphonobutyrate) receptor is a presynaptic glutamate receptor that inhibits transmitter release via an unknown mechanism. We examined the action of L-AP4 on voltage-dependent calcium currents and excitatory synaptic transmission on cultured olfactory bulb neurons using whole-cell voltage-clamp methods. In neurons dialyzed with GTP, L-AP4 inhibited high-threshold calcium currents evoked in barium solutions. The inhibition was irreversible in the presence of GTP-gamma-S and blocked by removing intracellular Mg2+ or by preincubation with pertussis toxin (PTX), consistent with the involvement of a PTX-sensitive G-protein. Dialysis with staurosporine or buffering of intracellular calcium to pCa less than 8 did not block the action of L-AP4, suggesting that protein phosphorylation or release of intracellular calcium stores was not involved in calcium current inhibition under these experimental conditions. PTX also blocked the L- AP4-induced inhibition of monosynaptic EPSPs evoked by intracellular stimulation of cultured mitral cells. These results suggest that the presynaptic AP4 receptor is a G-protein-coupled glutamate receptor, and that inhibition of calcium influx by a membrane-delimited action of a G- protein may account for L-AP4-induced presynaptic inhibition.

Back to top

In this issue

The Journal of Neuroscience: 12 (6)
Journal of Neuroscience
Vol. 12, Issue 6
1 Jun 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
L-AP4 inhibits calcium currents and synaptic transmission via a G- protein-coupled glutamate receptor
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
L-AP4 inhibits calcium currents and synaptic transmission via a G- protein-coupled glutamate receptor
PQ Trombley, GL Westbrook
Journal of Neuroscience 1 June 1992, 12 (6) 2043-2050; DOI: 10.1523/JNEUROSCI.12-06-02043.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
L-AP4 inhibits calcium currents and synaptic transmission via a G- protein-coupled glutamate receptor
PQ Trombley, GL Westbrook
Journal of Neuroscience 1 June 1992, 12 (6) 2043-2050; DOI: 10.1523/JNEUROSCI.12-06-02043.1992
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.