Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log out
  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Disparity sensitivity of neurons in monkey extrastriate area MST

JP Roy, H Komatsu and RH Wurtz
Journal of Neuroscience 1 July 1992, 12 (7) 2478-2492; DOI: https://doi.org/10.1523/JNEUROSCI.12-07-02478.1992
JP Roy
Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, Maryland 20892.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H Komatsu
Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, Maryland 20892.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RH Wurtz
Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, Maryland 20892.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We tested the disparity sensitivity of neurons from the medial superior temporal area (MST) in awake behaving monkeys. While the monkey looked at a fixation spot on a screen in front of it, random dot stimuli moved in the preferred direction of the cell under study, and the disparity of the dots made the stimuli appear to move in a frontoparallel plane in front of, on, or behind the screen. Over 90% of the 272 neurons studied were sensitive to the disparity of the visual stimulus. Of those disparity-sensitive cells, 95% were most responsive either to near stimuli (stimuli with crossed disparities appearing to move in front of the screen) or to far stimuli (stimuli with uncrossed disparities appearing to move behind the screen). In a smaller sample of the disparity-sensitive cells, we found cells whose preferred direction of stimulus motion reversed as the disparity of the stimulus reversed. For example, a cell that responded best to rightward motion for near stimuli responded best to leftward motion for far stimuli. We found that 40% of the disparity-sensitive cells had this disparity- dependent direction selectivity. This disparity-dependent direction selectivity was maintained over the entire range of speeds tested (6–56 degrees/sec). We tested whether the disparity sensitivity of the neurons indicated the distance of the stimulus from the screen where the monkey was fixating (relative depth) or the distance of the stimulus from the monkey (absolute depth) by having the monkey fixate at different depths in front of or behind the screen. For most MST neurons, the changes in vergence did not alter the disparity response, indicating that the disparity sensitivity of these neurons conveyed information on depth relative to the plane of fixation. We conclude that the disparity characteristics of cells in the dorsomedial MST are those expected of a system serving primarily coarse rather than fine stereopsis. The correlation between disparity selectivity and direction selectivity in these neurons, as well as their other properties, suggests a role in signaling the direction of self-motion of the observer through the environment.

Back to top

In this issue

The Journal of Neuroscience: 12 (7)
Journal of Neuroscience
Vol. 12, Issue 7
1 Jul 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Disparity sensitivity of neurons in monkey extrastriate area MST
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Disparity sensitivity of neurons in monkey extrastriate area MST
JP Roy, H Komatsu, RH Wurtz
Journal of Neuroscience 1 July 1992, 12 (7) 2478-2492; DOI: 10.1523/JNEUROSCI.12-07-02478.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Disparity sensitivity of neurons in monkey extrastriate area MST
JP Roy, H Komatsu, RH Wurtz
Journal of Neuroscience 1 July 1992, 12 (7) 2478-2492; DOI: 10.1523/JNEUROSCI.12-07-02478.1992
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.