Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Sensory tuning beyond the sensory system: an initial analysis of auditory response properties of neurons in the lateral amygdaloid nucleus and overlying areas of the striatum

F Bordi and J LeDoux
Journal of Neuroscience 1 July 1992, 12 (7) 2493-2503; DOI: https://doi.org/10.1523/JNEUROSCI.12-07-02493.1992
F Bordi
Center for Neural Science, New York University, New York 10003.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J LeDoux
Center for Neural Science, New York University, New York 10003.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The lateral amygdaloid nucleus (AL) is anatomically connected with sensory processing structures in the thalamus and cortex and is believed to be critically involved in emotional processing by virtue of these connections. In order to understand further how auditory projections to AL contribute to emotional processing, acoustic response properties of single AL neurons were characterized in rats. Recordings were also made in the posterior striatum dorsal to AL. Many cells in AL and the striatum could be driven by broad-band auditory stimulation with white noise or clicks. Initial onset latencies were typically between 12 and 25 msec. Most cells also had later responses (60–150 msec), and a few only had late responses. In frequency receptive field tests, different classes of cells were identified. One group had relatively clear frequency preferences. Thresholds for these relatively tuned cells tended to be somewhat higher in AL than in the striatum. Frequency preferences for AL cells were always above 10 kHz. Although most striatal cells had preferences for frequencies above 10 kHz, some cells were found with frequencies below 10 kHz as well. A second group of acoustically responsive neurons, much more common in AL than in the striatum, showed no frequency specificity (untuned cells). These responded to a wide range of frequencies, even at intensities near threshold. A third group, found mainly in AL (approximately 60% of the total population of cells examined in AL), exhibited rapid habituation to auditory stimuli. These tended to have high thresholds (80–100 dB). Because these cells habituated so quickly, frequency specificity could not be determined. Responses in AL and the striatum were compared with responses in the “specific” auditory relay nucleus of the thalamus, the ventral division of the medial geniculate body, where cells had shorter onset latencies, narrower tuning functions, and lower-intensity thresholds than cells in AL and striatal areas. These findings show that cells in AL exhibit a wide range of auditory tuning properties and suggest that information processing in the amygdala might be fruitfully studied as a direct extension of processing in sensory afferent structures.

Back to top

In this issue

The Journal of Neuroscience: 12 (7)
Journal of Neuroscience
Vol. 12, Issue 7
1 Jul 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Sensory tuning beyond the sensory system: an initial analysis of auditory response properties of neurons in the lateral amygdaloid nucleus and overlying areas of the striatum
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Sensory tuning beyond the sensory system: an initial analysis of auditory response properties of neurons in the lateral amygdaloid nucleus and overlying areas of the striatum
F Bordi, J LeDoux
Journal of Neuroscience 1 July 1992, 12 (7) 2493-2503; DOI: 10.1523/JNEUROSCI.12-07-02493.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Sensory tuning beyond the sensory system: an initial analysis of auditory response properties of neurons in the lateral amygdaloid nucleus and overlying areas of the striatum
F Bordi, J LeDoux
Journal of Neuroscience 1 July 1992, 12 (7) 2493-2503; DOI: 10.1523/JNEUROSCI.12-07-02493.1992
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.