Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Dynamic regulation of NGFI-A (zif268, egr1) gene expression in the striatum

R Moratalla, HA Robertson and AM Graybiel
Journal of Neuroscience 1 July 1992, 12 (7) 2609-2622; https://doi.org/10.1523/JNEUROSCI.12-07-02609.1992
R Moratalla
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge 02139.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
HA Robertson
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge 02139.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
AM Graybiel
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge 02139.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The expression of immediate-early genes of the fos/jun leucine zipper family can be regulated in striatal neurons by stimuli affecting the dopaminergic nigrostriatal system. The regulatory effects are gene specific, region specific, and striatal compartment specific. In the experiments reported here, we have explored the possibility that dopaminergic stimulation might also affect striatal expression of NGFI- A, a member of the zinc finger family of immediate-early genes. We treated healthy adult rats with amphetamine or cocaine and monitored the acute response of striatal neurons by in situ hybridization with oligonucleotide probes for NGFI-A mRNA. Both drugs evoked rapid, anatomically patterned increases in NGFI-A mRNA expression in the dorsal striatum (caudoputamen) and in the ventral striatum (nucleus accumbens, olfactory tubercle). The main response to each drug was in medium-sized neurons, known to be the projection neurons of the striatum. At every dose of amphetamine eliciting a response, the increased NGFI-A mRNA expression was preferentially concentrated in striosomes of the rostral caudoputamen, whereas cocaine at each dose given induced expression of NGFI-A mRNA in both striosomes and matrix at these striatal levels. The two indirect agonists evoked NGFI-A expression in both striatal compartments farther caudally, especially in the central and medial caudoputamen. Activation by both drugs was blocked by pretreatment with the D1-selective dopamine receptor antagonist SCH23390. These patterns of NGFI-A activation are remarkably similar to those found for Fos-like immunoreactivity following acute amphetamine and cocaine treatments, suggesting that coordinate activation of members of at least two immediate-early gene families occurs in the striatum following catecholaminergic stimulation. Such patterns of induction strongly support the view that the genomic responsiveness of the striosome and of the matrix compartments of the rostral striatum are distinct at the level of early-response gene expression. These findings raise the interesting possibility that some of the well-known effects of dopaminergic stimulation on neuropeptide and neurotransmitter expression in the striatum may reflect particular combinatorial patterns of immediate-early gene activation.

Back to top

In this issue

The Journal of Neuroscience: 12 (7)
Journal of Neuroscience
Vol. 12, Issue 7
1 Jul 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Dynamic regulation of NGFI-A (zif268, egr1) gene expression in the striatum
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Dynamic regulation of NGFI-A (zif268, egr1) gene expression in the striatum
R Moratalla, HA Robertson, AM Graybiel
Journal of Neuroscience 1 July 1992, 12 (7) 2609-2622; DOI: 10.1523/JNEUROSCI.12-07-02609.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Dynamic regulation of NGFI-A (zif268, egr1) gene expression in the striatum
R Moratalla, HA Robertson, AM Graybiel
Journal of Neuroscience 1 July 1992, 12 (7) 2609-2622; DOI: 10.1523/JNEUROSCI.12-07-02609.1992
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.