Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve regeneration

V Guenard, N Kleitman, TK Morrissey, RP Bunge and P Aebischer
Journal of Neuroscience 1 September 1992, 12 (9) 3310-3320; https://doi.org/10.1523/JNEUROSCI.12-09-03310.1992
V Guenard
Section for Artificial Organs, Biomaterials and Cellular Technology, Brown University, Providence Rhode Island 02912.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N Kleitman
Section for Artificial Organs, Biomaterials and Cellular Technology, Brown University, Providence Rhode Island 02912.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
TK Morrissey
Section for Artificial Organs, Biomaterials and Cellular Technology, Brown University, Providence Rhode Island 02912.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RP Bunge
Section for Artificial Organs, Biomaterials and Cellular Technology, Brown University, Providence Rhode Island 02912.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Aebischer
Section for Artificial Organs, Biomaterials and Cellular Technology, Brown University, Providence Rhode Island 02912.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

At present, clinical strategies to repair injured peripheral nerve concentrate on efforts to attain primary suture of the cut nerve ends. If this is not possible, autografts are used to unite the separated nerve segments. Both strategies are based on the recognition that the Schwann cells resident in the peripheral nerve trunk play a crucial role in the regenerative process. Neither strategy may be feasible, however, in extensive or multiple injuries because the amount of autograft material is limited, and allografts are subject to immune rejection. Artificially produced nerve bridges constructed of autologous Schwann cells seeded in guidance channels could be used to overcome these limitations. In the present experiments, the potential of Schwann cells derived from adult nerves and seeded in permselective guidance channels to promote neurite regeneration across an 8 mm nerve gap was evaluated in transected rat sciatic nerves. Immunological sequalae were evaluated by comparing Schwann cells from syngeneic and heterologous rat strains. Schwann cells from either adult outbred (Sprague-Dawley, CD) rats or inbred (Fisher, F) rats were suspended in a Matrigel solution at a density of 80 x 10(6) cells/ml (CD) or 40, 80, or 120 x 10(6) cells/ml (F-40, F-80, and F-120 channels, respectively). Channels containing Schwann cells were compared to sciatic nerve autografts, empty channels, or channels filled with Matrigel alone. One day after seeding permselective synthetic guidance channels with a Schwann cell suspension, a central cable of Schwann cells oriented along the axis of the tube was formed due to syneresis of the hydrogel. By 3 weeks postimplantation, regenerating axons had grown into all channels and autografts. Sciatic nerve autografts supported extensive regeneration, containing 4–5 x 10(4) myelinated axons at the graft midpoint. The ability of channels containing syngeneic Schwann cells to foster regeneration was dependent on the Schwann cell seeding density. At the channel's midpoint, the myelinated axon population in F-120 tubes was intermediate between that in sciatic nerve autografts and F- 80 channels, and was significantly higher than in F-40 or control channels. The nerve cable in Schwann cell-containing tubes consisted of larger, more organotypic fascicles than acellular control channels. In contrast, heterologous (CD) Schwann cells elicited a strong immune reaction that impeded nerve regeneration. The present study shows that cultured adult syngeneic Schwann cells seeded in permselective synthetic guidance channels support extensive peripheral nerve regeneration.(ABSTRACT TRUNCATED AT 400 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 12 (9)
Journal of Neuroscience
Vol. 12, Issue 9
1 Sep 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve regeneration
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve regeneration
V Guenard, N Kleitman, TK Morrissey, RP Bunge, P Aebischer
Journal of Neuroscience 1 September 1992, 12 (9) 3310-3320; DOI: 10.1523/JNEUROSCI.12-09-03310.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve regeneration
V Guenard, N Kleitman, TK Morrissey, RP Bunge, P Aebischer
Journal of Neuroscience 1 September 1992, 12 (9) 3310-3320; DOI: 10.1523/JNEUROSCI.12-09-03310.1992
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.