Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Enhanced ACh sensitivity is accompanied by changes in ACh receptor channel properties and segregation of ACh receptor subtypes on sympathetic neurons during innervation in vivo

BL Moss and LW Role
Journal of Neuroscience 1 January 1993, 13 (1) 13-28; DOI: https://doi.org/10.1523/JNEUROSCI.13-01-00013.1993
BL Moss
Department of Anatomy and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
LW Role
Department of Anatomy and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Although presynaptic input can influence the number and distribution of ACh receptors (AChRs) on muscle, the role of cellular interactions in the development of transmitter sensitivity in neurons is less clear. To determine whether presynaptic input modifies neuronal AChR channel function and distribution, we must first ascertain the profile of changes in receptor properties relative to the timing of synapse formation. We have examined the temporal aspects of synaptogenesis in the lumbar sympathetic ganglia of the embryonic chick in anatomical experiments with anterograde 1,1′-dioctadecyl-3,3,3′,3′- tetramethylindocarbocyanine perchlorate labeling of presynaptic inputs and cytochrome oxidase histochemistry. Biophysical studies of sympathetic neurons, within hours of removal from animals at different stages relative to synapse formation, show that both the properties and distribution of AChR channels are modified concurrent with a significant increase in presynaptic input to the neurons. The most striking change in AChR channel distribution is revealed by patching multiple sites on the surface of individual neurons. Following innervation in vivo, many neurons express only one of the four AChR channel subtypes and the AChRs are clustered in discrete, high-activity patches. Furthermore, when neurons at this stage express more than one AChR channel subtype, the different classes are often spatially segregated from one another on the cell surface. This contrasts with patches from neurons removed earlier on, which have lower overall activity, often comprised of multiple channel subtypes. Comparison of the AChR properties of acutely dispersed neurons to those of neurons maintained in vitro indicates that most features of AChR channels are conserved despite their removal from presynaptic and other in vivo influences. These findings are consistent with inductive interactions between pre- and postsynaptic neurons playing an important regulatory role in transmitter receptor expression.

Back to top

In this issue

The Journal of Neuroscience: 13 (1)
Journal of Neuroscience
Vol. 13, Issue 1
1 Jan 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Enhanced ACh sensitivity is accompanied by changes in ACh receptor channel properties and segregation of ACh receptor subtypes on sympathetic neurons during innervation in vivo
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Enhanced ACh sensitivity is accompanied by changes in ACh receptor channel properties and segregation of ACh receptor subtypes on sympathetic neurons during innervation in vivo
BL Moss, LW Role
Journal of Neuroscience 1 January 1993, 13 (1) 13-28; DOI: 10.1523/JNEUROSCI.13-01-00013.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Enhanced ACh sensitivity is accompanied by changes in ACh receptor channel properties and segregation of ACh receptor subtypes on sympathetic neurons during innervation in vivo
BL Moss, LW Role
Journal of Neuroscience 1 January 1993, 13 (1) 13-28; DOI: 10.1523/JNEUROSCI.13-01-00013.1993
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.