Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Prenatal development of excitability in cat retinal ganglion cells: action potentials and sodium currents

I Skaliora, RP Scobey and LM Chalupa
Journal of Neuroscience 1 January 1993, 13 (1) 313-323; https://doi.org/10.1523/JNEUROSCI.13-01-00313.1993
I Skaliora
Department of Psychology, University of California, Davis 95616.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RP Scobey
Department of Psychology, University of California, Davis 95616.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
LM Chalupa
Department of Psychology, University of California, Davis 95616.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The development of precise retinofugal projections is dependent on activity-mediated events, but as yet nothing is known about the ontogeny of excitable membrane properties in retinal ganglion cells (RGCs). In order to begin to understand how functional maturity is attained in these neurons, whole-cell patch-clamp recordings were obtained from acutely dissociated RGCs of fetal and postnatal timed- pregnant cats. Current-clamp recordings revealed a pronounced developmental increase in the proportion of RGCs capable of generating action potentials. At embryonic day 30 (E30), 5 weeks before birth and during a time when RGCs are still being generated, electrical stimulation elicited spikes in only a third of the cells. None of these neurons were capable of multiple discharges in response to maintained depolarization. The proportion of spiking neurons increased during ontogeny, such that by E55 all RGCs could be induced to generate action potentials, with the majority manifesting repetitive spiking patterns. Application of tetrodotoxin abolished spike activity of all fetal RGCs, indicating that sodium-mediated action potentials are present very early in development. At the same time, voltage-clamp recordings revealed significant ontogenetic modifications in several key properties of the sodium currents (INa). These were (1) a twofold increase in Na current densities; (2) a shift in the voltage dependence of both activation and steady state inactivation: with maturity, sodium currents activate at more negative potentials, while steady state inactivation of INa occurs at less negative potentials; and (3) a decrease in decay time constants of the Na current, at membrane potentials negative to -15 mV. These developmental changes were largely restricted to the period of axon ingrowth (E30-E38), suggesting that maturation of INa is not the limiting factor for the onset of activity- dependent restructuring of retinofugal projections.

Back to top

In this issue

The Journal of Neuroscience: 13 (1)
Journal of Neuroscience
Vol. 13, Issue 1
1 Jan 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Prenatal development of excitability in cat retinal ganglion cells: action potentials and sodium currents
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Prenatal development of excitability in cat retinal ganglion cells: action potentials and sodium currents
I Skaliora, RP Scobey, LM Chalupa
Journal of Neuroscience 1 January 1993, 13 (1) 313-323; DOI: 10.1523/JNEUROSCI.13-01-00313.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Prenatal development of excitability in cat retinal ganglion cells: action potentials and sodium currents
I Skaliora, RP Scobey, LM Chalupa
Journal of Neuroscience 1 January 1993, 13 (1) 313-323; DOI: 10.1523/JNEUROSCI.13-01-00313.1993
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.