Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Growth factors protect PC12 cells against ischemia by a mechanism that is independent of PKA, PKC, and protein synthesis

IR Boniece and JA Wagner
Journal of Neuroscience 1 October 1993, 13 (10) 4220-4228; DOI: https://doi.org/10.1523/JNEUROSCI.13-10-04220.1993
IR Boniece
Department of Neurology and Neuroscience, Cornell University Medical College, New York, New York 10021.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JA Wagner
Department of Neurology and Neuroscience, Cornell University Medical College, New York, New York 10021.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We have established an in vitro model of ischemia incorporating the combination of anoxia with glucose deprivation, which is toxic to PC12 cells. In this model, nerve growth factor (NGF), basic fibroblast growth factor (bFGF), and epidermal growth factor (EGF) improve PC12 cell survival. K252a, a specific inhibitor of NGF-induced trk p140 autophosphorylation, did not alter the neuroprotection provided by EGF or bFGF, yet it completely abolished the protection provided by NGF. Activation of protein kinase A (PKA) with dibutyryl-cAMP also protected during ischemia, although it was not additive with the effect provided by growth factors. Furthermore, growth factors protected a PKA- deficient mutant as effectively as the parental cell line; thus, activation of PKA is protective against ischemia but is not necessary for the action of peptide growth factors. Neither the stimulation of protein kinase C (PKC) with acute phorbol ester treatment nor the downregulation of PKC with chronic high-dose phorbol ester treatment resulted in an altered response to growth factors in either the PC12 wild type or PKA-deficient mutant. Thus, protection by peptide growth factors depends on neither PKA nor PKC. Furthermore, downregulation of PKC alone was protective, indicating that PKC may contribute to toxicity. Interestingly, treatment with the kinase inhibitor H-7 was neuroprotective and may have enhanced the neuroprotective effect of NGF. In contrast, staurosporine, a broadly acting kinase inhibitor, inhibited the neuroprotective effect of NGF, but not of EGF or FGF.(ABSTRACT TRUNCATED AT 250 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 13 (10)
Journal of Neuroscience
Vol. 13, Issue 10
1 Oct 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Growth factors protect PC12 cells against ischemia by a mechanism that is independent of PKA, PKC, and protein synthesis
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Growth factors protect PC12 cells against ischemia by a mechanism that is independent of PKA, PKC, and protein synthesis
IR Boniece, JA Wagner
Journal of Neuroscience 1 October 1993, 13 (10) 4220-4228; DOI: 10.1523/JNEUROSCI.13-10-04220.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Growth factors protect PC12 cells against ischemia by a mechanism that is independent of PKA, PKC, and protein synthesis
IR Boniece, JA Wagner
Journal of Neuroscience 1 October 1993, 13 (10) 4220-4228; DOI: 10.1523/JNEUROSCI.13-10-04220.1993
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.