Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Calcium signaling of glial cells along mammalian axons

S Kriegler and SY Chiu
Journal of Neuroscience 1 October 1993, 13 (10) 4229-4245; DOI: https://doi.org/10.1523/JNEUROSCI.13-10-04229.1993
S Kriegler
Biophysics Training Program, University of Wisconsin, Madison 53706.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SY Chiu
Biophysics Training Program, University of Wisconsin, Madison 53706.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Glial [Ca2+]i signaling was examined in a mammalian white matter lacking neuronal cell bodies and synapses. Rat optic nerves (postnatal days 2 and 7) were stained with calcium indicator dyes and confocal images of [Ca2+bdi were recorded at approximately 25 degrees C or approximately 37 degrees C. Glial cell bodies showed spiking or sustained [Ca2+], response to bath-applied glutamate (50–500 microM). The metabotropic glutamate agonist trans-ACPD elicited transient, sometimes spiking, [Ca2+], responses, whereas ionotropic agonists kainate and AMPA elicited a 6,7-dinitroquinoxaline-2,3-dione-sensitive, mostly sustained [Ca2+]i response. Transient and spiking glial [Ca2+]i responses also were elicited by adenosine and ATP (0.1–100 microM). Repetitive nerve stimulation (10–20 Hz) elicited [Ca2+bdi spiking in 15–25% of glial cells in postnatal day 7 nerves, with spiking typically occurring 15–60 sec after onset of nerve stimulation. At 37 degrees C, the frequency of glial [Ca2+]i spikes increased from approximately 0.06 Hz to approximately 0.11 Hz when axonal stimulation was increased from 10 to 20 Hz. This activity-dependent glial spiking was inhibited by TTX, could not be mimicked by increasing the bath K+ by 20 mM, and occurred when nerves were stimulated in the absence of bath calcium. Activity-dependent and glutamate-induced glial spiking could be mimicked by altering ionic gradients known to favor release of glutamate via glutamate transporters, including elevation of intracellular Na+ by veratridine concurrent with external K+ elevation. We suggest that glial [Ca2+]i spiking observed during electrical activity resulted from activation of glial receptors (e.g., metabotropic glutamate receptor, adenosine receptor) by substances (e.g., glutamate, adenosine) released from the optic nerve in a nonvesicular fashion, possibly through a reversal of sodium-coupled transporters when Na+ and K+ gradients are altered by prolonged nerve activity.

Back to top

In this issue

The Journal of Neuroscience: 13 (10)
Journal of Neuroscience
Vol. 13, Issue 10
1 Oct 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Calcium signaling of glial cells along mammalian axons
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Calcium signaling of glial cells along mammalian axons
S Kriegler, SY Chiu
Journal of Neuroscience 1 October 1993, 13 (10) 4229-4245; DOI: 10.1523/JNEUROSCI.13-10-04229.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Calcium signaling of glial cells along mammalian axons
S Kriegler, SY Chiu
Journal of Neuroscience 1 October 1993, 13 (10) 4229-4245; DOI: 10.1523/JNEUROSCI.13-10-04229.1993
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.