Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Activation of protein kinase C by arachidonic acid selectively enhances the phosphorylation of GAP-43 in nerve terminal membranes

JD Schaechter and LI Benowitz
Journal of Neuroscience 1 October 1993, 13 (10) 4361-4371; DOI: https://doi.org/10.1523/JNEUROSCI.13-10-04361.1993
JD Schaechter
Department of Neurosurgery, Children's Hospital, Boston, Massachusetts 02115.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
LI Benowitz
Department of Neurosurgery, Children's Hospital, Boston, Massachusetts 02115.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Arachidonic acid (AA), a cis-unsaturated fatty acid that activates certain subspecies of protein kinase C (PKC), has been proposed to act as a retrograde messenger in modifying the efficacy of synapses during long-term potentiation (LTP). One prominent PKC substrate of the nerve terminal membrane, GAP-43 (F1, B-50, neuromodulin), shows an increase in phosphorylation that correlates with the persistence of LTP. The present study investigated whether AA might exert its effects on presynaptic endings by modulating the phosphorylation of GAP-43 and other membrane-bound proteins. Using synaptosomal membranes from the rat cerebrocortex, in which in vivo relationships between protein kinases and their native substrates are likely to be preserved, we found that in the absence of Ca2+, AA exerted a modest effect on the phosphorylation of GAP-43 and several other proteins; however, when AA was applied in conjunction with Ca2+, GAP-43 showed a particularly striking response: at Ca2+ levels likely to exist at the nerve terminal membrane during synaptic activity (10(-7) to 10(-5) M), AA (50 microM) increased the sensitivity of GAP-43 phosphorylation to Ca2+ by an order of magnitude, and increased its maximal level of phosphorylation by 50%. At resting Ca2+ levels, AA potentiated the stimulation in GAP-43 phosphorylation produced by 4 beta-phorbol 12,13-dibutyrate, a diacylglycerol (DAG) analog. The stimulatory effect of AA and its synergistic interaction with Ca2+ were found to be mediated by PKC, since they were blocked by a specific peptide inhibitor of PKC, [Ala25]PKC(19–31), but were unaffected by an inhibitor of protein phosphatase activity or by scavengers of free radicals. Since GAP-43 has been implicated in the development and plasticity of synaptic relationships, the synergistic effects of AA and the intracellular signals Ca2+ and DAG on the phosphorylation of GAP-43 may serve as an AND gate to modify presynaptic function and/or structure in response to coincident pre- and postsynaptic activity.

Back to top

In this issue

The Journal of Neuroscience: 13 (10)
Journal of Neuroscience
Vol. 13, Issue 10
1 Oct 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Activation of protein kinase C by arachidonic acid selectively enhances the phosphorylation of GAP-43 in nerve terminal membranes
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Activation of protein kinase C by arachidonic acid selectively enhances the phosphorylation of GAP-43 in nerve terminal membranes
JD Schaechter, LI Benowitz
Journal of Neuroscience 1 October 1993, 13 (10) 4361-4371; DOI: 10.1523/JNEUROSCI.13-10-04361.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Activation of protein kinase C by arachidonic acid selectively enhances the phosphorylation of GAP-43 in nerve terminal membranes
JD Schaechter, LI Benowitz
Journal of Neuroscience 1 October 1993, 13 (10) 4361-4371; DOI: 10.1523/JNEUROSCI.13-10-04361.1993
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.