Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Loss of glutamate decarboxylase mRNA-containing neurons in the rat dentate gyrus following pilocarpine-induced seizures

A Obenaus, M Esclapez and CR Houser
Journal of Neuroscience 1 October 1993, 13 (10) 4470-4485; https://doi.org/10.1523/JNEUROSCI.13-10-04470.1993
A Obenaus
Brain Research Institute, University of California at Los Angeles 90024– 1761.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Esclapez
Brain Research Institute, University of California at Los Angeles 90024– 1761.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
CR Houser
Brain Research Institute, University of California at Los Angeles 90024– 1761.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In situ hybridization methods were used to determine if glutamic acid decarboxylase (GAD) mRNA-containing neurons within the hilus of the dentate gyrus are vulnerable to seizure-induced damage in a model of chronic seizures. Sprague-Dawley rats were injected intraperitoneally with pilocarpine, and the hippocampal formation was studied histologically at 1, 2, 4, and 8 week intervals after pilocarpine- induced seizures. In situ hybridization histochemistry, using a digoxigenin-labeled GAD cRNA probe, demonstrated a substantial decrease in the number of GAD mRNA-containing neurons in the hilus of the dentate gyrus in the pilocarpine-treated rats as compared to controls at all time intervals. Additional neuronanatomical studies, including cresyl violet staining, neuronal degeneration methods, and histochemical localization of glial fibrillary acidic protein, suggested that the decrease in the number of GAD mRNA-containing neurons was related to neuronal loss rather than to a decrease in GAD mRNA levels. The loss of GAD mRNA-containing neurons in the hilus contrasted with the relative preservation of labeled putative basket cells along the inner margin of the granule cell layer. Quantitative analyses of labeled neurons in three regions of the dentate gyrus in the 1 and 2 week groups showed statistically significant decreases in the mean number of GAD mRNA-containing neurons in the hilus of both groups of experimental animals. No significant differences were found in the molecular layer or the granule cell layer, which included labeled neurons along the lower margin of the granule cell layer. The results indicate that, in this model, a subpopulation of GAD mRNA- containing neurons within the dentate gyrus is selectively vulnerable to seizure-induced damage. Such differential vulnerability appears to be another indication of the heterogeneity of GABA neurons.

Back to top

In this issue

The Journal of Neuroscience: 13 (10)
Journal of Neuroscience
Vol. 13, Issue 10
1 Oct 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Loss of glutamate decarboxylase mRNA-containing neurons in the rat dentate gyrus following pilocarpine-induced seizures
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Loss of glutamate decarboxylase mRNA-containing neurons in the rat dentate gyrus following pilocarpine-induced seizures
A Obenaus, M Esclapez, CR Houser
Journal of Neuroscience 1 October 1993, 13 (10) 4470-4485; DOI: 10.1523/JNEUROSCI.13-10-04470.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Loss of glutamate decarboxylase mRNA-containing neurons in the rat dentate gyrus following pilocarpine-induced seizures
A Obenaus, M Esclapez, CR Houser
Journal of Neuroscience 1 October 1993, 13 (10) 4470-4485; DOI: 10.1523/JNEUROSCI.13-10-04470.1993
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.