Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Structural and functional specialization of A delta and C fiber free nerve endings innervating rabbit corneal epithelium

MB MacIver and DL Tanelian
Journal of Neuroscience 1 October 1993, 13 (10) 4511-4524; https://doi.org/10.1523/JNEUROSCI.13-10-04511.1993
MB MacIver
Department of Anesthesia, Stanford University School of Medicine, California 94305–5117.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DL Tanelian
Department of Anesthesia, Stanford University School of Medicine, California 94305–5117.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

An in vitro preparation of rabbit cornea was used to compare anatomical specialization and electrophysiological responses of A delta and C fiber sensory afferents which terminate as free nerve endings. Living nerve endings were visualized using epifluorescence microscopy and the vital dye 4-di2-ASP, and response properties were determined using microstimulation and recording of fiber discharge activity. Fiber type was determined based on conduction velocity measurement and preferred stimulus energy (modality) of each fiber. Four modality-specific fiber populations were identified: (1) slowly adapting C fiber cold receptors (conduction velocity of 0.25–1.6 m/sec), (2) C fiber chemosensitive units with mixed phasic and tonic activity (1.1–1.8 m/sec), (3) rapidly adapting mechanosensitive A delta fibers (1.5–2.8 m/sec), and (4) high- threshold mechano/heat (> 350 dyne or > 40 degrees C) phasic A delta afferents (3.5–4.4 m/sec). In addition to these physiological differences, anatomical specialization was also noted. A delta fiber nerve endings were distinguished from those of C fibers by thin, elongated sensory endings that ran parallel to the corneal surface; C fiber endings formed short, branching clusters that ran mostly perpendicular to the surface. The elongated structure of A delta nerve endings was associated with directional selectivity for mechanical stimuli. These results substantiate previous suggestions that free nerve endings can exhibit both structural and functional specialization.

Back to top

In this issue

The Journal of Neuroscience: 13 (10)
Journal of Neuroscience
Vol. 13, Issue 10
1 Oct 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Structural and functional specialization of A delta and C fiber free nerve endings innervating rabbit corneal epithelium
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Structural and functional specialization of A delta and C fiber free nerve endings innervating rabbit corneal epithelium
MB MacIver, DL Tanelian
Journal of Neuroscience 1 October 1993, 13 (10) 4511-4524; DOI: 10.1523/JNEUROSCI.13-10-04511.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Structural and functional specialization of A delta and C fiber free nerve endings innervating rabbit corneal epithelium
MB MacIver, DL Tanelian
Journal of Neuroscience 1 October 1993, 13 (10) 4511-4524; DOI: 10.1523/JNEUROSCI.13-10-04511.1993
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.