Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Neural substrates of visual stimulus-stimulus association in rhesus monkeys

EA Murray, D Gaffan and M Mishkin
Journal of Neuroscience 1 October 1993, 13 (10) 4549-4561; https://doi.org/10.1523/JNEUROSCI.13-10-04549.1993
EA Murray
Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, Maryland 20892.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D Gaffan
Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, Maryland 20892.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Mishkin
Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, Maryland 20892.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Rhesus monkeys learned 10 visual stimulus-stimulus association, or paired associates. They then received bilateral removals of either the amygdaloid complex and underlying cortex, the hippocampal formation and underlying cortex, or both combined, or they were retained as unoperated controls. After surgery or rest, the monkeys were tested for their retention of the preoperatively learned set of paired associates, as well as for their ability to learn new associations of the same type. Both unoperated controls and hippocampectomized monkeys relearned the preoperatively trained set of paired associates almost immediately. By contrast, monkeys with amygdala removals were moderately retarded in relearning, and monkeys with combined amygdala and hippocampal ablations were severely retarded. When confronted with new sets of visual stimuli, monkeys with amygdala removals or hippocampal removals learned new sets of paired associates at the same rate as the controls, whereas monkeys with the combined ablation were again profoundly retarded. Only one monkey with the combined lesion was able to learn new stimulus-stimulus associations to criterion, and then only after extensive training, despite the ability of all three animals in this group to perform delayed matching-to-sample with the same stimuli and the same intraatrial delays as those used in the paired associate task. At the end of the main experiment, two of the unoperated controls received bilateral ablations of the rhinal cortex. These monkeys showed the same level of difficulty in learning new paired associates as the animals in the main experiment that had received the combined amygdala plus hippocampal ablations. The results implicate the medial temporal lobe, and particularly the rhinal cortex, in the formation of stimulus- stimulus associative memories.

Back to top

In this issue

The Journal of Neuroscience: 13 (10)
Journal of Neuroscience
Vol. 13, Issue 10
1 Oct 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Neural substrates of visual stimulus-stimulus association in rhesus monkeys
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Neural substrates of visual stimulus-stimulus association in rhesus monkeys
EA Murray, D Gaffan, M Mishkin
Journal of Neuroscience 1 October 1993, 13 (10) 4549-4561; DOI: 10.1523/JNEUROSCI.13-10-04549.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Neural substrates of visual stimulus-stimulus association in rhesus monkeys
EA Murray, D Gaffan, M Mishkin
Journal of Neuroscience 1 October 1993, 13 (10) 4549-4561; DOI: 10.1523/JNEUROSCI.13-10-04549.1993
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.