Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Developmental analysis of hippocampal mossy fiber outgrowth in a mutant mouse with inherited spike-wave seizures

X Qiao and JL Noebels
Journal of Neuroscience 1 November 1993, 13 (11) 4622-4635; DOI: https://doi.org/10.1523/JNEUROSCI.13-11-04622.1993
X Qiao
Department of Neurology, Baylor College of Medicine, Houston, Texas 77030.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JL Noebels
Department of Neurology, Baylor College of Medicine, Houston, Texas 77030.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Neural firing patterns are an essential determinant of normal axon terminal growth and synaptic connectivity in developing afferent pathways, but the trophic role of synchronous activity in associative neural networks is less well defined. We examined the ontogeny of inherited synchronous hippocampal network discharges and mossy fiber innervation patterns at sequential stages of development in the stargazer (stg) mutant, a single-locus mouse mutation expressing generalized spike-wave epilepsy. Brief bursts of 6/sec repetitive discharges arise spontaneously on postnatal days 17–18 and persistently activate neocortical and hippocampal networks throughout adulthood. We found a striking pattern of mossy fiber recurrent axon collateral sprouting in the inner molecular layer of dentate gyrus in the adult stg hippocampus. Sprouting is not apparent until 4–6 weeks following seizure onset, but then steadily intensifies with continued synchronous activation. In the adult mutant, axon outgrowth is accompanied by a mild selective loss of hilar interneurons without gliosis. These data indicate that hypersynchronous stimulation during late postnatal brain development is linked, following a prolonged latent period, to significant fiber outgrowth and synaptic reorganization within the hippocampal formation. Since the pattern of synchronous activation in the stg mutant strongly resembles that seen in human spike-wave absence epilepsy, the synaptic plasticity described in this model has important implications for normal brain development in this common disorder.

Back to top

In this issue

The Journal of Neuroscience: 13 (11)
Journal of Neuroscience
Vol. 13, Issue 11
1 Nov 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Developmental analysis of hippocampal mossy fiber outgrowth in a mutant mouse with inherited spike-wave seizures
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Developmental analysis of hippocampal mossy fiber outgrowth in a mutant mouse with inherited spike-wave seizures
X Qiao, JL Noebels
Journal of Neuroscience 1 November 1993, 13 (11) 4622-4635; DOI: 10.1523/JNEUROSCI.13-11-04622.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Developmental analysis of hippocampal mossy fiber outgrowth in a mutant mouse with inherited spike-wave seizures
X Qiao, JL Noebels
Journal of Neuroscience 1 November 1993, 13 (11) 4622-4635; DOI: 10.1523/JNEUROSCI.13-11-04622.1993
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.