Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Several extracellular domains of the neural cell adhesion molecule L1 are involved in neurite outgrowth and cell body adhesion

F Appel, J Holm, JF Conscience and M Schachner
Journal of Neuroscience 1 November 1993, 13 (11) 4764-4775; DOI: https://doi.org/10.1523/JNEUROSCI.13-11-04764.1993
F Appel
Department of Neurobiology, Swiss Federal Institute of Technology, Zurich.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Holm
Department of Neurobiology, Swiss Federal Institute of Technology, Zurich.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JF Conscience
Department of Neurobiology, Swiss Federal Institute of Technology, Zurich.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Schachner
Department of Neurobiology, Swiss Federal Institute of Technology, Zurich.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The neural cell adhesion molecule L1 is a multidomain protein that plays important roles in cell adhesion, migration, and neurite outgrowth. To analyze structure-function relationships of L1 in neurite outgrowth and cell body adhesion, we have expressed and purified a set of different fragments of the extracellular part of this glycoprotein in CHO cells and in Escherichia coli. When neurite outgrowth from small cerebellar neurons was measured on substrate-coated L1 or L1 fragments, neurite outgrowth was promoted by the immunoglobulin-like domains I-II, III-IV, and V-VI, and by the fibronectin type III homologous repeats 1– 2, while the fibronectin type III homologous repeats 3–5 were ineffective. In contrast, cell bodies of small cerebellar neurons adhered mostly to the immunoglobulin-like domains I-II and V-VI, and to the fibronectin type III homologous repeats 3–5, but less to the immunoglobulin-like domains III-IV and fibronectin type III homologous repeats 1–2. In both assays, the neuronal cell surface receptor for all active protein fragments was identified as L1. No significant differences in functional activities were found between fragments with and without carbohydrate structures. These findings indicate that L1 uses several domains for homophilic interactions overlapping for the two functions analyzed here, but also showing some regional specialization. Furthermore, we show that a homophilic molecule uses several domains in one function, with neurite outgrowth requiring more domains than adhesion for maximal activity.

Back to top

In this issue

The Journal of Neuroscience: 13 (11)
Journal of Neuroscience
Vol. 13, Issue 11
1 Nov 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Several extracellular domains of the neural cell adhesion molecule L1 are involved in neurite outgrowth and cell body adhesion
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Several extracellular domains of the neural cell adhesion molecule L1 are involved in neurite outgrowth and cell body adhesion
F Appel, J Holm, JF Conscience, M Schachner
Journal of Neuroscience 1 November 1993, 13 (11) 4764-4775; DOI: 10.1523/JNEUROSCI.13-11-04764.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Several extracellular domains of the neural cell adhesion molecule L1 are involved in neurite outgrowth and cell body adhesion
F Appel, J Holm, JF Conscience, M Schachner
Journal of Neuroscience 1 November 1993, 13 (11) 4764-4775; DOI: 10.1523/JNEUROSCI.13-11-04764.1993
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.