Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Thresholds for synaptic activation of transcription factors in hippocampus: correlation with long-term enhancement

PF Worley, RV Bhat, JM Baraban, CA Erickson, BL McNaughton and CA Barnes
Journal of Neuroscience 1 November 1993, 13 (11) 4776-4786; DOI: https://doi.org/10.1523/JNEUROSCI.13-11-04776.1993
PF Worley
Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205–2185.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RV Bhat
Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205–2185.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JM Baraban
Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205–2185.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
CA Erickson
Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205–2185.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
BL McNaughton
Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205–2185.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
CA Barnes
Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205–2185.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Recent studies suggest a role for rapid induction of transcription factors in stimulus-induced neuronal plasticity in the mammalian brain. Synaptic activation of transcription factors has been analyzed in the hippocampus using the long-term potentiation or enhancement (LTP/LTE) paradigm. Using this approach, several studies have identified transcription factors that are induced in hippocampal granule cells by NMDA receptor-dependent mechanisms; however, the link between long-term plasticity and activation of these genes has been called into question by reports suggesting that the thresholds for LTE and gene activation differ. To address this issue, we have used a chronic in vivo recording technique to monitor mRNA responses of several transcription factor genes to two different patterns of LTE-inducing electrical stimulation of entorhinal cortical afferents to hippocampus. One pattern consisted of 10 repetitions of a 20 or 25 msec train of pulses at 400 Hz (80 or 100 pulses total). This “10-train” pattern has been used in previous studies of LTE and produces robust synaptic enhancement lasting at least 3 d (Barnes, 1979). The other stimulation pattern consisted of 50 repetitions of a 20 msec train delivered at 400 Hz (400 pulses total), which is similar to parameters used in other studies reporting induction of c-fos in association with LTE (Dragunow et al., 1989; Jeffery et al., 1990; Abraham et al., 1992). Our results indicate that expression of zif268, monitored by in situ hybridization and immunostaining, is strongly induced by the 10-train stimulus pattern to levels similar to those induced by seizure activity. JunB mRNA levels are also modestly increased by the 10-train stimulus pattern; however, increases in JunB immunostaining were not detected. Neither c-fos nor c- jun mRNA were detectably induced by this stimulus. In contrast, the 50- train stimulus pattern resulted in a robust induction of c-fos and c- jun mRNA, in addition to zif268 and junB. Transcription factor responses to either stimulus pattern were blocked by the noncompetitive NMDA receptor antagonist MK-801. Identical transcription factor responses were observed in adult (6–12-month-old) and aged (23–26-month- old) rats, suggesting that synaptic mechanisms involved in these responses are preserved in aged animals. Analysis of LTE following either the 10- or 50-train stimulus patterns revealed identical magnitudes of initial induction and decay kinetics (approximately 3 d) and indicates that the 10-train stimulus pattern is sufficient to produce maximal synaptic enhancement.(ABSTRACT TRUNCATED AT 400 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 13 (11)
Journal of Neuroscience
Vol. 13, Issue 11
1 Nov 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Thresholds for synaptic activation of transcription factors in hippocampus: correlation with long-term enhancement
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Thresholds for synaptic activation of transcription factors in hippocampus: correlation with long-term enhancement
PF Worley, RV Bhat, JM Baraban, CA Erickson, BL McNaughton, CA Barnes
Journal of Neuroscience 1 November 1993, 13 (11) 4776-4786; DOI: 10.1523/JNEUROSCI.13-11-04776.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Thresholds for synaptic activation of transcription factors in hippocampus: correlation with long-term enhancement
PF Worley, RV Bhat, JM Baraban, CA Erickson, BL McNaughton, CA Barnes
Journal of Neuroscience 1 November 1993, 13 (11) 4776-4786; DOI: 10.1523/JNEUROSCI.13-11-04776.1993
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.