Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum

Y Kawaguchi
Journal of Neuroscience 1 November 1993, 13 (11) 4908-4923; DOI: https://doi.org/10.1523/JNEUROSCI.13-11-04908.1993
Y Kawaguchi
Laboratory for Neural Systems, Frontier Research Program, RIKEN, Wako, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Interneurons in lateral part of neostriatum were studied in isolated slices from juvenile rats (16–20 d postnatal) by whole-cell, current- clamp recording at 33–34 degrees C, followed by intracellular staining with biocytin and double immunocytochemical or histochemical staining for parvalbumin, ChAT, and NADPH diaphorase. Medium-sized spiny neurons (MS cells) had distal dendrites with many spines and were likely projection cells, while interneurons had dendrites with fewer spines. The neostriatal interneurons could be further divided into three classes by physiological, chemical, and morphological criteria. The first class of interneurons (fast-spiking cells, FS cells) fired very short-duration action potentials with short-duration afterhyperpolarizations at constant spike frequency during depolarizing current pulses. FS cells had more negative resting potentials and lower input resistances than the other two classes. At depolarized potentials, FS cells fired repetitive spikes in response to synaptic excitation. FS cells were immunoreactive for parvalbumin. As all parvalbumin-immunoreactive cells in the neostriatum were also immunoreactive for GABA, FS cells were considered to be GABAergic. FS cells were further divided into two morphological types: FS cells with local dendritic fields and FS cells with extended dendritic fields. The axons of both types of FS cells had their densest collateralization within or near their dendritic fields. The other two classes of interneuron, PLTS cells (persistent and low-threshold spike cells) and LA cells (long-lasting afterhyperpolarization cells), were distinguished from FS cells by longer-duration action potentials and larger input resistances, had less negative resting potentials, and had longer-lasting afterhyperpolarizations. Afterhyperpolarizations of PLTS cells had a shorter time to peak than those of LA cells. PLTS cells fired both Na(+)-dependent, persistent depolarization spikes and Ca(2+)- dependent, low-threshold spikes in addition to fast spikes. Low- threshold spikes in PLTS cells were induced only from hyperpolarized potentials. Both persistent depolarizations and low-threshold spikes could also be evoked by synaptic activation. PLTS cells were histochemically identified as NADPH diaphorase-positive cells. As all NADPH diaphorase-positive cells in the same tissue were immunoreactive for nitric oxide (NO) synthase, PLTS cells were considered to release NO. PLTS cells had the largest axonal fields. Some PLTS cells appeared to have two axonal origins from the somata and dendrites. LA cells were mostly large aspiny cells with Ca(2+)-dependent long-lasting afterhyperpolarizations and strong time-dependent hyperpolarizing rectification. As this slowly occurring anomalous rectification was blocked by 2 mM cesium, this potential was considered to be due to activation of Ih.(ABSTRACT TRUNCATED AT 400 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 13 (11)
Journal of Neuroscience
Vol. 13, Issue 11
1 Nov 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum
Y Kawaguchi
Journal of Neuroscience 1 November 1993, 13 (11) 4908-4923; DOI: 10.1523/JNEUROSCI.13-11-04908.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum
Y Kawaguchi
Journal of Neuroscience 1 November 1993, 13 (11) 4908-4923; DOI: 10.1523/JNEUROSCI.13-11-04908.1993
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.