Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Low-threshold Ca2+ current and its role in spontaneous elevations of intracellular Ca2+ in developing Xenopus neurons [published erratum appears in J Neurosci 1994 Mar;14(3):following table of contents]

X Gu and NC Spitzer
Journal of Neuroscience 1 November 1993, 13 (11) 4936-4948; https://doi.org/10.1523/JNEUROSCI.13-11-04936.1993
X Gu
Department of Biology, University of California at San Diego, La Jolla 92093.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
NC Spitzer
Department of Biology, University of California at San Diego, La Jolla 92093.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Amphibian spinal neurons exhibit spontaneous elevations of intracellular calcium at early stages of development. The underlying calcium influx involves high-voltage-activated (HVA) currents. To begin to understand how they are triggered, we have studied the biophysical properties and developmental function of low-voltage-activated (LVA) T- type calcium current of neurons cultured from the embryonic neural plate. T current was recorded from young neurons (6–9 hr in vitro) and from mature neurons (18–48 hr in vitro) using whole-cell voltage clamp. For both young and mature neurons, T current has a low threshold and is activated at membrane potentials positive to -60 mV in 2 mM extracellular calcium. The current is maximal at -35 mV with a mean peak amplitude of approximately 50 pA. Nickel blocks both LVA and HVA currents, but the former are 20-fold more sensitive. Amiloride also blocks T current selectively. T current is recorded in 87% of young neurons. This percentage drops to 67% in mature neurons after 1 d in culture and to 35% in mature neurons after 2 d in culture. There are no significant developmental changes in T current threshold, peak density, time course of activation and inactivation, and pharmacological sensitivity to blockers from 6 to 48 hr in culture. Spontaneous transient calcium elevations in young neurons assayed by fluo-3 fluorescence are blocked by nickel or amiloride at concentrations that specifically block T current. T current has the lowest threshold among other inward currents in young neurons. Moreover, mathematical simulations show that T current lowers the threshold of the action potential by 15 mV. We conclude that T current can depolarize cells and trigger action potentials, and constitutes part of the cascade of events leading to spontaneous elevations of intracellular calcium in cultured neurons at early stages of differentiation.

Back to top

In this issue

The Journal of Neuroscience: 13 (11)
Journal of Neuroscience
Vol. 13, Issue 11
1 Nov 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Low-threshold Ca2+ current and its role in spontaneous elevations of intracellular Ca2+ in developing Xenopus neurons [published erratum appears in J Neurosci 1994 Mar;14(3):following table of contents]
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Low-threshold Ca2+ current and its role in spontaneous elevations of intracellular Ca2+ in developing Xenopus neurons [published erratum appears in J Neurosci 1994 Mar;14(3):following table of contents]
X Gu, NC Spitzer
Journal of Neuroscience 1 November 1993, 13 (11) 4936-4948; DOI: 10.1523/JNEUROSCI.13-11-04936.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Low-threshold Ca2+ current and its role in spontaneous elevations of intracellular Ca2+ in developing Xenopus neurons [published erratum appears in J Neurosci 1994 Mar;14(3):following table of contents]
X Gu, NC Spitzer
Journal of Neuroscience 1 November 1993, 13 (11) 4936-4948; DOI: 10.1523/JNEUROSCI.13-11-04936.1993
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.