Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

GABA shapes a topographic organization of response latency in the mustache bat's inferior colliculus

TJ Park and GD Pollak
Journal of Neuroscience 1 December 1993, 13 (12) 5172-5187; DOI: https://doi.org/10.1523/JNEUROSCI.13-12-05172.1993
TJ Park
Department of Zoology, University of Texas at Austin 78712.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
GD Pollak
Department of Zoology, University of Texas at Austin 78712.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Many neurons in the auditory forebrain of the mustache bat act as coincidence detectors for signals separated in time by up to 20 msec. Differences in path lengths cannot adequately explain how the nervous system delays one signal relative to the other to such a large degree. Several researchers have proposed that an inhibitory mechanism might account for long delays, but it has not been known where these delays are created. Previous studies, using a variety of mammals, have reported that the inferior colliculus contains some cells with much longer latencies than those of cells in lower auditory centers, suggesting that the inferior colliculus might be the site where long delays are generated. We characterized the latencies of cells in the 60 kHz contour of the mustache bat inferior colliculus and examined how GABAergic inhibition affected the latencies of those cells. Evaluations of the influence of GABA were made by documenting changes in response latency that occurred when GABAergic inputs were reversibly blocked by iontophoretic application of the GABAA antagonist bicuculline. Prior to bicuculline application, latencies varied over a wide range among the population of cells and we observed a pattern of latency changes with dorsoventral location. The pattern was that the population of neurons in the dorsal regions of the inferior colliculus had a wide range of latencies while the population in more ventral regions had progressively narrower latency ranges. Thus, while some cells at each depth had comparably short latencies, the average latency of the population at a given depth was long in the dorsal inferior colliculus and became progressively shorter ventrally. The same characteristic distribution of latencies and pattern of latency changes with depth were observed for cells that had different aural preferences, different rate-intensity functions, and different discharge patterns, suggesting that latency is an important organizational feature of the inferior colliculus. Bicuculline substantially shortened latency in about half of the cells studied, and it dramatically altered the pattern of latency changes with depth. These results suggest that GABA normally lengthens response latencies and creates a dorsoventral grading of delays in the inferior colliculus. This wide range of latencies could provide the large latency differences necessary for the coincidence detectors in the medial geniculate body tuned to signals separated by up to 20 msec.

Back to top

In this issue

The Journal of Neuroscience: 13 (12)
Journal of Neuroscience
Vol. 13, Issue 12
1 Dec 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
GABA shapes a topographic organization of response latency in the mustache bat's inferior colliculus
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
GABA shapes a topographic organization of response latency in the mustache bat's inferior colliculus
TJ Park, GD Pollak
Journal of Neuroscience 1 December 1993, 13 (12) 5172-5187; DOI: 10.1523/JNEUROSCI.13-12-05172.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
GABA shapes a topographic organization of response latency in the mustache bat's inferior colliculus
TJ Park, GD Pollak
Journal of Neuroscience 1 December 1993, 13 (12) 5172-5187; DOI: 10.1523/JNEUROSCI.13-12-05172.1993
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.