Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log out
  • Log in
  • Subscribe
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • Subscribe
  • My alerts
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Long-term potentiation and long-term depression of primary afferent neurotransmission in the rat spinal cord

M Randic, MC Jiang and R Cerne
Journal of Neuroscience 1 December 1993, 13 (12) 5228-5241; DOI: https://doi.org/10.1523/JNEUROSCI.13-12-05228.1993
M Randic
Department of Veterinary Physiology and Pharmacology, Iowa State University, Ames 50011.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MC Jiang
Department of Veterinary Physiology and Pharmacology, Iowa State University, Ames 50011.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Cerne
Department of Veterinary Physiology and Pharmacology, Iowa State University, Ames 50011.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Synaptic transmission between dorsal root afferents and neurons in the superficial laminae of the spinal dorsal horn (laminae I-III) was examined by intracellular recording in a transverse slice preparation of rat spinal cord. Brief high-frequency electrical stimulation (300 pulses at 100 Hz) of primary afferent fibers produced a long-term potentiation (LTP) or a long-term depression (LTD) of fast (monosynaptic and polysynaptic) EPSPs in a high proportion of dorsal horn neurons. Both the AMPA and the NMDA receptor-mediated components of synaptic transmission at the primary afferent synapses with neurons in the dorsal horn can exhibit LTP and LTD of the synaptic responses. In normal and neonatally capsaicin-treated rats, the induction of LTP requires the activation of NMDA receptor-gated conductances. The induction of LTP or LTD, however, was not abolished in the presence of bicuculline, a GABAA receptor antagonist. The results demonstrate that distinct and long-lasting modulation in synaptic efficiency can be induced at primary afferent synapses with neurons in the superficial laminae of spinal dorsal horn by high-frequency stimulation of dorsal root afferents and that these changes may be physiologically relevant for transmission and integration of sensory information, including pain.

Back to top

In this issue

The Journal of Neuroscience: 13 (12)
Journal of Neuroscience
Vol. 13, Issue 12
1 Dec 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Long-term potentiation and long-term depression of primary afferent neurotransmission in the rat spinal cord
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Long-term potentiation and long-term depression of primary afferent neurotransmission in the rat spinal cord
M Randic, MC Jiang, R Cerne
Journal of Neuroscience 1 December 1993, 13 (12) 5228-5241; DOI: 10.1523/JNEUROSCI.13-12-05228.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Long-term potentiation and long-term depression of primary afferent neurotransmission in the rat spinal cord
M Randic, MC Jiang, R Cerne
Journal of Neuroscience 1 December 1993, 13 (12) 5228-5241; DOI: 10.1523/JNEUROSCI.13-12-05228.1993
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.