Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Ionic flux contributions to neocortical slow waves and nucleus basalis- mediated activation: whole-cell recordings in vivo

R Metherate and JH Ashe
Journal of Neuroscience 1 December 1993, 13 (12) 5312-5323; DOI: https://doi.org/10.1523/JNEUROSCI.13-12-05312.1993
R Metherate
Department of Neuroscience, University of California, Riverside 92521.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JH Ashe
Department of Neuroscience, University of California, Riverside 92521.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Slow, rhythmic membrane potential (Vm) fluctuations occur spontaneously in cortical neurons of urethane-anesthetized rats, and likely underlie EEG activity in the same low-frequency (1–4 Hz or delta) range. Nucleus basalis (NB) stimulation elicits neocortical activation, simultaneously modifying Vm and EEG fluctuations, by way of cortical muscarinic ACh receptors (Metherate et al., 1992). To investigate the nature of spontaneous fluctuations and their modification by NB stimulation, we have obtained intracellular recordings from auditory cortex using the whole-cell recording technique in vivo. Spontaneous Vm fluctuations appeared to contain three components whose polarity and time course resembled the EPSP, putative Cl(-)-mediated IPSP, and putative K(+)- mediated, long-lasting IPSP elicited by thalamic stimulation. The spontaneous, long-lasting hyperpolarization, whose rhythmic occurrence appeared to set the slow-wave rhythm, was associated with an increased conductance that could shunt the thalamocortical EPSP. We hypothesized that spontaneous Vm fluctuations arise from intermixed rapid depolarizations, rapid Cl(-)-mediated hyperpolarizations, and long- lasting, K(+)-mediated hyperpolarizations. NB-mediated cortical activation might then result from muscarinic suppression of K+ permeability, allowing the rapid depolarizations and Cl- fluxes to continue uninterrupted. Tests of this hypothesis showed that (1) intracellular blockade of K+ channels by rapid diffusion of Cs+ from the recording pipette resulted in suppression of spontaneous, long- lasting hyperpolarizations, mimicking the effect of NB stimulation, and reducing shunting of the thalamocortical EPSP; (2) effects of Cs+ and NB stimulation suggested overlapping, or converging, mechanisms of action; however, there were important differential effects on the spontaneous, long-lasting hyperpolarizations and the K(+)-mediated IPSP; and (3) modifying Cl- fluxes with intracellular picrotoxin or high intracellular Cl- concentrations resulted in spontaneous and NB- elicited large-amplitude depolarizations. We conclude that spontaneous, long-lasting hyperpolarizations are K+ fluxes, but are not “spontaneous” K(+)-mediated IPSPs. Since NB-mediated reduction of spontaneous hyperpolarizations implies muscarinic suppression of a K+ conductance, the spontaneous hyperpolarizations more likely result from the calcium-activated K+ current, IK(Ca). Finally, Cl- fluxes form an important component of activated Vm fluctuations that acts to restrain excessive depolarization.

Back to top

In this issue

The Journal of Neuroscience: 13 (12)
Journal of Neuroscience
Vol. 13, Issue 12
1 Dec 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Ionic flux contributions to neocortical slow waves and nucleus basalis- mediated activation: whole-cell recordings in vivo
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Ionic flux contributions to neocortical slow waves and nucleus basalis- mediated activation: whole-cell recordings in vivo
R Metherate, JH Ashe
Journal of Neuroscience 1 December 1993, 13 (12) 5312-5323; DOI: 10.1523/JNEUROSCI.13-12-05312.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Ionic flux contributions to neocortical slow waves and nucleus basalis- mediated activation: whole-cell recordings in vivo
R Metherate, JH Ashe
Journal of Neuroscience 1 December 1993, 13 (12) 5312-5323; DOI: 10.1523/JNEUROSCI.13-12-05312.1993
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.