Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Synaptic potentials in the central terminals of locust proprioceptive afferents generated by other afferents from the same sense organ

M Burrows and G Laurent
Journal of Neuroscience 1 February 1993, 13 (2) 808-819; https://doi.org/10.1523/JNEUROSCI.13-02-00808.1993
M Burrows
Division of Biology, California Institute of Technology, Pasadena 91125.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Laurent
Division of Biology, California Institute of Technology, Pasadena 91125.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Afferent neurons from a proprioceptor [the femoral chordotonal organ (FCO)] at the femoro-tibial joint of a locust hindleg carry patterns of spikes to the CNS in which information is coded about the positions and movements of the tibia. Intracellular recordings from the afferents of this organ as they enter the CNS reveal spikes and depolarizing post- synaptic potentials (PSPs) during voluntary or imposed movements of the joint. Some of these PSPs are generated as a result of spikes in other FCO afferents, and can be evoked experimentally by electrical stimulation of the nerve from the organ. One afferent does not appear to synapse directly on another, but instead activates reliable pathways involving other central neurons. Current clamping of individual afferents in isolated ganglia shows that the PSPs are increased in amplitude by hyperpolarizing currents injected into an afferent, and decreased by depolarizing ones. They reverse at about -68 mV (n = 5). At the normal resting potential of the afferents, -72 mV (+/- 0.42 SE, n = 57), the PSPs are therefore depolarizing, and are associated with an increased conductance of the membrane. The changes in membrane potential and conductances associated with the PSPs can be mimicked by pressure injection of GABA into the regions of neuropil that contain the terminals of the afferents. The potential evoked by GABA is associated with an increased conductance of the membrane and reverses at the same potential as the PSPs. GABA also reduces the PSPs evoked in the terminals, either by movements of the FCO or by electrical stimulation of its nerve. The PSPs and the effects of the GABA-evoked potentials are mimicked by the GABA agonist muscimol. The PSPs are blocked reversibly by picrotoxin. The PSPs and the GABA-evoked potentials both alter the excitability of an afferent terminal by reducing the ability of the membrane to support an action potential. It is suggested that the PSPs are depolarizing, inhibitory potentials generated in the terminals of the afferents by central neurons that release GABA, and that their role is to change the efficacy of the afferent spikes at their first output synapses in the CNS. These interactions could form a graded, gain control mechanism for synaptic transmission at the afferent output synapses that is directly dependent on the features of the mechanical movements of the joint.

Back to top

In this issue

The Journal of Neuroscience: 13 (2)
Journal of Neuroscience
Vol. 13, Issue 2
1 Feb 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Synaptic potentials in the central terminals of locust proprioceptive afferents generated by other afferents from the same sense organ
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Synaptic potentials in the central terminals of locust proprioceptive afferents generated by other afferents from the same sense organ
M Burrows, G Laurent
Journal of Neuroscience 1 February 1993, 13 (2) 808-819; DOI: 10.1523/JNEUROSCI.13-02-00808.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Synaptic potentials in the central terminals of locust proprioceptive afferents generated by other afferents from the same sense organ
M Burrows, G Laurent
Journal of Neuroscience 1 February 1993, 13 (2) 808-819; DOI: 10.1523/JNEUROSCI.13-02-00808.1993
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.