Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Cell cycle parameters and patterns of nuclear movement in the neocortical proliferative zone of the fetal mouse

T Takahashi, RS Nowakowski and VS Caviness Jr
Journal of Neuroscience 1 February 1993, 13 (2) 820-833; https://doi.org/10.1523/JNEUROSCI.13-02-00820.1993
T Takahashi
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston 02114.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RS Nowakowski
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston 02114.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
VS Caviness Jr
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston 02114.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Cytogenesis is the critical determinant of the total number of neurons that contribute to the formation of the cerebral cortex and the rate at which the cells are produced. Two distinct cell populations constitute the proliferative population, a pseudostratified ventricular epithelium (PVE) lying within the ventricular zone (VZ) at the margin of the ventricle, and a secondary proliferative population that is intermixed with the PVE within the VZ but also is distributed through the overlying subventricular and intermediate zones of the cerebral wall. The present analysis, based upon cumulative S-phase labeling of the proliferative cells with 5-bromo-2′-deoxyuridine, is principally concerned with the PVE of the gestational-day-14 (E14) murine cerebral wall. It has immediate but also more far reaching general objectives. The most immediate objective, essential to the design and interpretation of later experiments, is to provide estimates of critical parameters of cytogenesis for the PVE. The growth fraction is virtually 100%. The lengths of the overall cell cycle, S-, G2+M-m, and G1-phases are 15.1 hr, 3.8 hr, 2 hr, and 9.3 hr, respectively. The PVE is homogeneous with respect to cell cycle length. For methodological considerations, these estimates are more accurate than estimates of the same parameters obtained in earlier analyses based upon S-phase labeling with tritiated thymidine. It is particularly with respect to a shorter length of S-phase determined here that the present values are different from those obtained with thymidine. At a more innovative level, the temporal and spatial resolution of nuclear movement made possible by the methods developed here will allow, in a way not previously attempted, a fine-grained tracking of nuclear movement as cells execute the successive stages of the cell cycle or exit the cycle subsequent to mitosis. Such observations are pertinent to our understanding of the regulatory mechanisms of neocortical histogenesis and the cell biological mechanisms that govern the proliferative cycle of the ventricular epithelium itself. It is known that the velocity of nuclear movement in the PVE is maximum in G2 (fourfold increase from S- phase) and minimum in M and early G1.(ABSTRACT TRUNCATED AT 400 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 13 (2)
Journal of Neuroscience
Vol. 13, Issue 2
1 Feb 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Cell cycle parameters and patterns of nuclear movement in the neocortical proliferative zone of the fetal mouse
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Cell cycle parameters and patterns of nuclear movement in the neocortical proliferative zone of the fetal mouse
T Takahashi, RS Nowakowski, VS Caviness Jr
Journal of Neuroscience 1 February 1993, 13 (2) 820-833; DOI: 10.1523/JNEUROSCI.13-02-00820.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Cell cycle parameters and patterns of nuclear movement in the neocortical proliferative zone of the fetal mouse
T Takahashi, RS Nowakowski, VS Caviness Jr
Journal of Neuroscience 1 February 1993, 13 (2) 820-833; DOI: 10.1523/JNEUROSCI.13-02-00820.1993
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.