Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

In vivo observations of pre- and postsynaptic changes during the transition from multiple to single innervation at developing neuromuscular junctions

RJ Balice-Gordon and JW Lichtman
Journal of Neuroscience 1 February 1993, 13 (2) 834-855; https://doi.org/10.1523/JNEUROSCI.13-02-00834.1993
RJ Balice-Gordon
Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JW Lichtman
Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Synaptic rearrangements in developing muscle were studied by visualizing individual neuromuscular junctions in the sternomastoid muscle of living neonatal mice as they underwent the transition from multiple to single innervation. Vital staining of ACh receptors (AChRs) with rhodamine-conjugated alpha-bungarotoxin showed that while junctions were still multiply innervated (usually by two motor axons), regions of the postsynaptic membrane within each junction became depleted of receptors. Usually, several small postsynaptic areas lost AChRs in succession. In these areas, AChRs already in the membrane rapidly disappeared compared to a low level of receptor turnover elsewhere in the junction. Moreover, there was no evidence of new AChRs being inserted into these areas. Within each postsynaptic area undergoing AChR depletion, the intensity of receptor staining decreased gradually over 1-2 d. In some junctions, it appeared that AChRs were migrating away from areas being depleted of receptors. The depletion of AChRs from some sites in combination with the spreading apart of the entire receptor-rich area due to muscle fiber growth accounts for the transformation from plaque-like to branched receptor distributions at developing neuromuscular junctions. Vital staining of presynaptic motor nerve terminals at junctions whose postsynaptic AChRs were also stained showed that motor nerve terminals were lost from the same areas that were depleted of receptors postsynaptically. Postsynaptic areas began to be depleted of AChRs before there was any obvious loss of membrane or intracellular staining in the overlying nerve terminal. Only when a single innervating axon remained at a junction did loss of motor nerve terminals and underlying AChRs largely cease. That former synaptic areas could at later times be identified as uninnervated regions within a junction indicates that synapse elimination during development leaves an indelible mark on synaptic structure. These observations suggest that the withdrawal of a motor axon from a neuromuscular junction occurs as a consequence of the stepwise elimination of all of its synapses with that muscle fiber. These results also suggest that an important aspect of synaptic competition leading to axon withdrawal is the precocious loss of AChRs beneath the nerve terminals of the axon that will be eliminated. A similar early loss of AChRs beneath one axon's synapses has been shown to occur during synapse elimination in reinnervated adult muscle (Rich and Lichtman, 1989a).(ABSTRACT TRUNCATED AT 400 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 13 (2)
Journal of Neuroscience
Vol. 13, Issue 2
1 Feb 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
In vivo observations of pre- and postsynaptic changes during the transition from multiple to single innervation at developing neuromuscular junctions
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
In vivo observations of pre- and postsynaptic changes during the transition from multiple to single innervation at developing neuromuscular junctions
RJ Balice-Gordon, JW Lichtman
Journal of Neuroscience 1 February 1993, 13 (2) 834-855; DOI: 10.1523/JNEUROSCI.13-02-00834.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
In vivo observations of pre- and postsynaptic changes during the transition from multiple to single innervation at developing neuromuscular junctions
RJ Balice-Gordon, JW Lichtman
Journal of Neuroscience 1 February 1993, 13 (2) 834-855; DOI: 10.1523/JNEUROSCI.13-02-00834.1993
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.