Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Inhibition of Ca2+ currents by a mu-opioid in a defined subset of rat sensory neurons

JE Schroeder and EW McCleskey
Journal of Neuroscience 1 February 1993, 13 (2) 867-873; DOI: https://doi.org/10.1523/JNEUROSCI.13-02-00867.1993
JE Schroeder
Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri 63110.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
EW McCleskey
Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri 63110.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Activation of the endogenous opioid system can suppress pain without affecting other sensations, but the cellular mechanism of this selectivity is unclear. The analgesia might be due to inhibitory synapses arranged only on neurons whose activity leads to pain sensations. Alternatively, opioids might be released broadly, with neurons involved in pain sensation being especially sensitive. Therefore, we asked whether different subsets of rat dorsal root ganglion (DRG) sensory neurons vary in their sensitivity to opioids. Dissociated neurons were subdivided according to the spinal laminae to which they likely had projected, and whether they had innervated muscle. Using the patch-clamp method, we measured the inhibition of Ca2+ current by DAGO (Tyr-D-Ala-Gly-MePhe-Gly-ol), a peptide that selectively activates the mu (morphine) receptor. We also investigated the presence of different types of Ca2+ channels. In DRG neurons chosen at random, Ca2+ currents were inhibited by DAGO to widely varying degrees, with an average inhibition of 38%. Ca2+ currents in neurons in a subset that projects to laminae I and II had a lower average inhibition, and unlike the randomly selected cells, the responses were predictable and tightly distributed about the mean. This indicates that the variability of opioid sensitivity among DRG neurons reflects the presence of different subsets of cells. Since neurons projecting to laminae I and II, the projection site of nociceptive neurons, did not show high opioid sensitivity, there is no evidence that nociceptive neurons have stronger responses to opioids. But a firm conclusion is impossible because projection site does not strictly define sensory modality.

Back to top

In this issue

The Journal of Neuroscience: 13 (2)
Journal of Neuroscience
Vol. 13, Issue 2
1 Feb 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Inhibition of Ca2+ currents by a mu-opioid in a defined subset of rat sensory neurons
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Inhibition of Ca2+ currents by a mu-opioid in a defined subset of rat sensory neurons
JE Schroeder, EW McCleskey
Journal of Neuroscience 1 February 1993, 13 (2) 867-873; DOI: 10.1523/JNEUROSCI.13-02-00867.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Inhibition of Ca2+ currents by a mu-opioid in a defined subset of rat sensory neurons
JE Schroeder, EW McCleskey
Journal of Neuroscience 1 February 1993, 13 (2) 867-873; DOI: 10.1523/JNEUROSCI.13-02-00867.1993
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.