Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task

W Schultz, P Apicella and T Ljungberg
Journal of Neuroscience 1 March 1993, 13 (3) 900-913; DOI: https://doi.org/10.1523/JNEUROSCI.13-03-00900.1993
W Schultz
Institut de Physiologie, Universite de Fribourg, Switzerland.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Apicella
Institut de Physiologie, Universite de Fribourg, Switzerland.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T Ljungberg
Institut de Physiologie, Universite de Fribourg, Switzerland.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The present investigation had two aims: (1) to study responses of dopamine neurons to stimuli with attentional and motivational significance during several steps of learning a behavioral task, and (2) to study the activity of dopamine neurons during the performance of cognitive tasks known to be impaired after lesions of these neurons. Monkeys that had previously learned a simple reaction time task were trained to perform a spatial delayed response task via two intermediate tasks. During the learning of each new task, a total of 25% of 76 dopamine neurons showed phasic responses to the delivery of primary liquid reward, whereas only 9% of 163 neurons responded to this event once task performance was established. This produced an average population response during but not after learning of each task. Reward responses during learning were significantly more numerous and pronounced in area A10, as compared to areas A8 and A9. Dopamine neurons also showed phasic responses to the two conditioned stimuli. These were the instruction cue, which was the first stimulus in each trial and indicated the target of the upcoming arm movement (58% of 76 neurons during and 44% of 163 neurons after learning), and the trigger stimulus, which was a conditioned incentive stimulus predicting reward and eliciting a saccadic eye movement and an arm reaching movement (38% of neurons during and 40% after learning). None of the dopamine neurons showed sustained activity in the delay between the instruction and trigger stimuli that would resemble the activity of neurons in dopamine terminal areas, such as the striatum and frontal cortex. Thus, dopamine neurons respond phasically to alerting external stimuli with behavioral significance whose detection is crucial for learning and performing delayed response tasks. The lack of sustained activity suggests that dopamine neurons do not encode representational processes, such as working memory, expectation of external stimuli or reward, or preparation of movement. Rather, dopamine neurons are involved with transient changes of impulse activity in basic attentional and motivational processes underlying learning and cognitive behavior.

Back to top

In this issue

The Journal of Neuroscience: 13 (3)
Journal of Neuroscience
Vol. 13, Issue 3
1 Mar 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task
W Schultz, P Apicella, T Ljungberg
Journal of Neuroscience 1 March 1993, 13 (3) 900-913; DOI: 10.1523/JNEUROSCI.13-03-00900.1993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task
W Schultz, P Apicella, T Ljungberg
Journal of Neuroscience 1 March 1993, 13 (3) 900-913; DOI: 10.1523/JNEUROSCI.13-03-00900.1993
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.